We report a method to control contributions of bulk and surface states in the topological insulator Bi_{2}Te_{2}Se that allows accessing the spin-polarized transport endowed by topological surface states. An intrinsic surface dominant transport is established when cooling the sample to low temperature or reducing the conduction channel length, both achieved in situ in the transport measurements with a four-probe scanning tunneling microscope without the need of further tailoring the sample. The topological surface states show characteristic transport behaviors with mobility about an order of magnitude higher than reported before, and a spin polarization approaching the theoretically predicted value. Our result demonstrates accessibility to the intrinsic high mobility spin transport of topological surface states, which paves a way to realizing topological spintronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.176801DOI Listing

Publication Analysis

Top Keywords

surface states
16
topological surface
12
spin transport
8
transport topological
8
topological insulator
8
transport
6
topological
6
surface
5
accessing intrinsic
4
intrinsic spin
4

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

is a widely distributed nosocomial pathogen that causes various acute and chronic infections, particularly in immunocompromised patients. In this study, the activities of the K9-specific virulent phage AM24 and phage-encoded depolymerase DepAPK09 were assessed using in vivo mouse sepsis and burn skin infection models. In the mouse sepsis model, in the case of prevention or early treatment, a single K9-specific phage or recombinant depolymerase injection was able to protect 100% of the mice after parenteral infection with a lethal dose of of the K9-type, with complete eradication of the pathogen.

View Article and Find Full Text PDF

Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.

View Article and Find Full Text PDF

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

Cationic Cyclodextrin-Based Carriers for Drug and Nucleic Acid Delivery.

Pharmaceutics

January 2025

Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.

Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!