Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the observation of a current-phase relation dominated by the second Josephson harmonic in superconductor-ferromagnet-superconductor junctions. The exotic current-phase relation is realized in the vicinity of a temperature-controlled 0-to-π junction transition, at which the first Josephson harmonic vanishes. Direct current-phase relation measurements, as well as Josephson interferometry, nonvanishing supercurrent and half-integer Shapiro steps at the 0-π transition self-consistently point to an intrinsic second harmonic term, making it possible to rule out common alternative origins of half-periodic behavior. While surprising for diffusive multimode junctions, the large second harmonic is in agreement with theory predictions for thin ferromagnetic interlayers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.177702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!