Distinguishing specific molecules from similar chemical species with minor structural differences is challenging, and differentiation has typically been based on analyte-dependent host-guest interactions upon irradiation with a single wavelength. In this study, we prepared a Cd-based metal-organic framework exhibiting nearly constant emission intensity over a wide range of excitations. Because of its unique emission characteristics, this material facilitated the differentiation of specific molecules amidst structurally similar chemical species via competitive absorption. Such discriminative identification was uniquely achieved based on the use of different excitation wavelengths and is demonstrated to be applicable to the recognition of a target analyte in sensory applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b16926 | DOI Listing |
Pharmaceutics
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:
Understanding metabolic activities involved in bloom formation during a single-species algal bloom has improved greatly. However, little is known about metabolic activities during a multi-species algal bloom. Here, we investigated protein expression profiles at different bloom stages of a mixed dinoflagellate bloom caused by Karenia mikimotoi and Prorocentrum obtusidens (syn.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
Clarifying the potential relationship between the microstructure of nanoconfined choline chloride/urea (ChClU) and CO absorption performance is key to understanding the abnormal increase in CO under nanoconfinement. In this study, we used molecular dynamics simulations and grand canonical Monte Carlo (GCMC) to systematically study the mechanism underlying the absorption of CO by ChClU within nanoslits. According to the spatial distribution, ChClU can form two different laminar regions within nanoslits, namely, the interfacial region (region I) and beyond region I (region II).
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
The multiple exciton generation (MEG) effect, which produces multiple photo-generated charge carriers from a single high-energy photon absorption by a semiconductor with a narrow bandgap, has the potential to revolutionize photovoltaic, photoelectric detection, and other technologies. Here, this work finds that the surface carbon-modified wide-bandgap photoanode with hierarchical quantum structure can drive a photoelectrochemical reaction with a quantum efficiency exceeding 145% by the first time. More studies reveal that the presence of the MEG effect in the MEG-CdS photoanode is attributed to the formation of high-quality surface C-modified CdS quantum nanosheets on CdS bulk film by in situ, this hierarchical quantum structure leads to quantum confinement effects that increase effective Coulomb interaction for driving MEG and decrease competition for thermal exciton cooling.
View Article and Find Full Text PDFChemistry
January 2025
National Chi Nan University, Department of Applied Chemistry, TAIWAN.
Three fluorescent Zn coordaintion polymers (CPs) have been synthesized from the reactions of Zn(NO3)2∙6H2O, benzene-1,4-dicarboxylic acid (1,4-H2bdc), and angular carbazole-derived bispyridyl ligands (Cz-3,6-bpy or Cz-Pr-3,6-bpy). CPs 1-3 all adopt similar two-dimensional (2D) ring-and-rod layer structures, described as topologically 4-connected 2∙65 nets where the Zn(II) centers act as 4-connected nodes. CPs 1 and 2 are a pair of solvent-mediated supramolecular isomers where the former shows a two-fold interlocked 2D → 2D polyrotaxane-like entangled net and the latter reveals a four-fold interpenetrated 2D → 3D polyrotaxane entanglement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!