Cerebrospinal fluid (CSF) extracellular vesicles (EVs) show promise as a source of neurological disease biomarkers, although their precise origin is poorly understood. Current extraction techniques produce disappointing yield and purity. This study describes the application of ultrafiltration LC (UFLC) to CSF-EVs, compared with ultracentrifugation (UC), and explores CSF-EV origin. EVs are extracted from human CSF by UC and UFLC and characterized using nanoparticle tracking analysis, electron microscopy, and immunoblotting. EV and CSF proteomes are analyzed by LC-MS/MS. UFLC-isolated particles have size, morphology, and marker expression characteristic of EVs. UFLC provides greater EV yield (UFLC 7.90 × 10 ± SD 1.31 × 10 EVs mL CSF, UC 1.06 × 10 ± 0.57 × 10 p < 0.001). UFLC enhances purity, proteomic depth (UFLC 622 ± 49, UC 298 ± 50, p = 0.001), and consistency of quantification (CV 17% vs 23%). EVs contain more intracellular proteins (Odds ratio [OR] 2.63 p < 0.001) and fewer plasma proteins than CSF (OR 0.60, p < 0.001). CSF and EV-enriched proteomes show overrepresentation of brain-specific proteins (EV OR 3.18, p < 0.001; CSF OR 3.37, p < 0.001). Overrepresentation of cerebral white matter (OR 1.99, p = 0.015) and choroid plexus proteins (OR 1.87, p<0.001) is observed in EVs. UFLC improves yield and purity of CSF-EVs. The EV-enriched proteome better reflects the intracellular and white matter proteome than whole CSF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201800257 | DOI Listing |
Clin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).
iScience
January 2025
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist.
View Article and Find Full Text PDFmedRxiv
April 2024
Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA.
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial TRAP-MS (NCT03109288) to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.
Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!