Myriad advances in all fields of cardiac imaging have stimulated and reflected new understanding of cardiac performance, myocardial damage and the mechanisms of heart failure. In this paper, the Heart Failure Association assesses the potential usefulness of innovative imaging modalities in enabling more precise diagnostic and prognostic evaluation, as well as in guiding treatment strategies. Many new methods have gradually penetrated clinical practice and are on their way to becoming a part of routine evaluation. This paper focuses on myocardial deformation and three-dimensional ultrasound imaging; stress tests for the evaluation of contractile and filling function; the progress of magnetic resonance techniques; molecular imaging and other sound innovations. The Heart Failure Association aims to highlight the ways in which paradigms have shifted in several areas of cardiac assessment. These include reassessing of the simplified concept of ejection fraction and implementation of the new parameters of cardiac performance applicable to all heart failure phenotypes; switching from two-dimensional to more accurate and reproducible three-dimensional ultrasound volumetric evaluation; greater tissue characterization via recently developed magnetic resonance modalities; moving from assessing cardiac function and congestion at rest to assessing it during stress; from invasive to novel non-invasive hybrid techniques depicting coronary anatomy and myocardial perfusion; as well as from morphometry to the imaging of pathophysiologic processes such as inflammation and apoptosis. This position paper examines the specific benefits of imaging innovations for practitioners dealing with heart failure aetiology, risk stratification and monitoring, and, in addition, for scientists involved in the development of future research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ejhf.1330DOI Listing

Publication Analysis

Top Keywords

heart failure
28
failure association
12
innovative imaging
8
cardiac assessment
8
cardiac performance
8
three-dimensional ultrasound
8
magnetic resonance
8
heart
7
failure
7
cardiac
6

Similar Publications

Introduction: The cardiotoxicity and subsequent Heart Failure (HF) induced by Doxorubicin (DOX) limit the clinical application of DOX. Valsartan (Val) is an angiotensin II receptor blocker that could attenuate the HF induced by DOX. However, the underlying mechanism of Val in this process is not fully understood.

View Article and Find Full Text PDF

Adrenomedullin 2/Intermedin Exerts Cardioprotective Effects by Regulating Cardiomyocyte Mitochondrial Function.

Hypertension

January 2025

Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).

Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.

Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.

View Article and Find Full Text PDF

Background: Increased burden of socially determined vulnerabilities (SDV), which include nonmedical conditions that contribute to patient health, is associated with incident heart failure (HF). Mediators of this association have not been examined. We aimed to determine if a healthy lifestyle mediates the association between SDV and HF.

View Article and Find Full Text PDF

An atrial septal defect (ASD) is a common congenital heart anomaly that results in irregular blood flow between the systemic and pulmonary circulations due to an opening in the atrial septum. Ostium secondum ASD accounts for a large proportion of these defects and often goes unnoticed during childhood and adolescence. Pulmonary hypertension (PH), affecting a significant number of patients with ostium secondum ASD, is associated with functional limitations, heart failure, and tachyarrhythmias.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!