How much temporal recurrence is present in microbial assemblages is still an unanswered ecological question. Even though marked seasonal changes have been reported for whole microbial communities, less is known on the dynamics and seasonality of individual taxa. Here, we aim at understanding microbial recurrence at three different levels: community, taxonomic group and operational taxonomic units (OTUs). For that, we focused on a model microbial eukaryotic community populating a long-term marine microbial observatory using 18S rRNA gene data from two organismal size fractions: the picoplankton (0.2-3 µm) and the nanoplankton (3-20 µm). We have developed an index to quantify recurrence in particular taxa. We found that community structure oscillated systematically between two main configurations corresponding to winter and summer over the 10 years studied. A few taxonomic groups such as Mamiellophyceae or MALV-III presented clear recurrence (i.e., seasonality), whereas 13%-19% of the OTUs in both size fractions, accounting for ~40% of the relative abundance, featured recurrent dynamics. Altogether, our work links long-term whole community dynamics with that of individual OTUs and taxonomic groups, indicating that recurrent and non-recurrent changes characterize the dynamics of microbial assemblages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.14929 | DOI Listing |
FEMS Microbiol Ecol
January 2025
Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, México.
Marine protists are key components of biogeochemical cycles and microbial food webs, which respond quickly to environmental factors. In the Gulf of Mexico (GoM), the Loop Current intensifies in summer and supplies the gulf with warm and oligotrophic waters. However, the cyclonic eddies within the GoM create favorable conditions for biological productivity by bringing nutrient-rich water to the subsurface layer.
View Article and Find Full Text PDFWaste Manag
January 2025
Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China. Electronic address:
Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China.
View Article and Find Full Text PDFMicroorganisms
January 2025
State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Conservation Genomics Research Unit and Animal, Environmental and Antique DNA Platform, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States.
Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!