Background: Clinical drugs for herpesvirus exhibit high toxicity and suffer from significant drug resistance. The development of new, effective, and safe anti-herpesvirus agents with different mechanisms of action is greatly required.
Objective: Novel inhibitors against herpesvirus with different mechanisms of action from that of clinical drugs.
Methods: A series of novel 5-(benzylamino)-1H-1,2,3-triazole-4-carboxamides were efficiently synthesized and EC50 values against Human Cytomegalovirus (HCMV), Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) were evaluated in vitro.
Results: Some compounds present antiviral activity. Compounds 5s and 5t are potent against both HCMV and VZV. Compounds 5m, 5n, 5s, and 5t show similar EC50 values against both TK+ and TK- VZV strains.
Conclusion: 5-(Benzylamino)-1H-1, 2,3-triazole-4-carboxamides are active against herpesviruses and their activity is remarkably affected by the nature and the position of substituents in the benzene ring. The results indicate that these derivatives are independent of the viral thymidine kinase (TK) for activation, which is indispensable for current drugs. Their mechanisms of action may differ from those of the clinic anti-herpesvirus drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573406414666181109095239 | DOI Listing |
Nat Prod Bioprospect
January 2025
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro).
View Article and Find Full Text PDFMath Biosci
January 2025
Biocomplexity Institute, University of Virginia, VA, USA; Department of Computer Science, University of Virginia, VA, USA.
Public health interventions reduce infection risk, while imposing significant costs on both individuals and the society. Interventions can also lead to behavioral changes, as individuals weigh the cost and benefits of avoiding infection. Aggregate epidemiological models typically focus on the population-level consequences of interventions, often not incorporating the mechanisms driving behavioral adaptations associated with interventions compliance.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:
The increasing utilization of antimony (Sb) in manufacturing industries has led to the emergence of Sb contamination in the environment as a significant public health concern. To elucidate the toxicity of Sb and its mechanism of action, this study aimed to investigate the adverse effects of Sb on a cosmopolitan insect, housefly (Musca domestica), under a whole life cycle (from embryonic to adult stage) exposure through the examination of a suite of parameters, including biological, physiological, behavioral, and molecular endpoints. A range of Sb concentrations, including moderate contamination (0.
View Article and Find Full Text PDFWomen Birth
January 2025
School of Education, Health and Social Studies, Dalarna University, Falun, Sweden.
Background: Despite global support for midwifery leadership investment, there is a notable lack of scientific evaluations of leadership programmes worldwide for midwives. The Government of India's Midwifery Initiative launched the Midwifery Leadership Programme to enhance the leadership capacity of state-level midwifery leaders.
Aim: To evaluate the Midwifery Leadership Programme in India using implementation science as a framework.
Genome Biol
January 2025
Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.
Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!