A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrothermal Synthesis of Urchin-like W-V-O Nanostructures with Excellent Catalytic Performance. | LitMetric

Hydrothermal Synthesis of Urchin-like W-V-O Nanostructures with Excellent Catalytic Performance.

Inorg Chem

College of Chemistry and Molecular Sciences, National Demonstration Center for Experimental Chemistry Education (Wuhan University) , Wuhan University, Wuhan , 430072 , People's Republic of China.

Published: December 2018

Urchinlike W-V-O microspheres have been successfully synthesized for the first time by a one-pot hydrothermal approach. The as-synthesized W-V-O material was characterized by several techniques such as XRD, SEM, TEM, FTIR, EDS, BET, and Raman spectroscopy. The characterization results have revealed that the W-V-O microspheres consist of numerous one-dimensional nanobelts radially grown from the center. The typical nanobelts display rectangular cross sections with lengths of several micrometers, widths of about 50 nm, and thicknesses of approximately 10-20 nm. Vanadium oxides are dispersed highly either on the external surface or inside the channel surface of the hexagonal WO structure. In addition, the as-obtained urchin-like W-V-O material was explored as a catalyst for the ammoxidation of 2,4- and 2,6-dichlorotoluene to the corresponding nitriles. The catalytic results have indicated that the W-V-O nanostructures show excellent performance with yields of 2,4- and 2,6-dichlorobenzonitrile respectively reaching up to 77.3 and 75.1%, which are the highest among the previously reported catalysts with two components. The formation process of the urchinlike W-V-O microspheres was simply investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b02513DOI Listing

Publication Analysis

Top Keywords

w-v-o microspheres
12
urchin-like w-v-o
8
w-v-o nanostructures
8
nanostructures excellent
8
urchinlike w-v-o
8
w-v-o material
8
w-v-o
7
hydrothermal synthesis
4
synthesis urchin-like
4
excellent catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!