In fluorescence-based assays, usually a target molecule is captured using a probe conjugated to a capture surface, and then detected using a second fluorescently labeled probe. One of the most common capture surfaces is a magnetic bead. However, magnetic beads exhibit strong autofluorescence, which often overlaps with the emission of the reporter fluorescent dyes and limits the analytical performance of the assay. Here, several widely used magnetic beads are photobleached and their autofluorescence is reduced to 1% of the initial value. Their autofluorescence properties, including their photobleaching decay rates and autofluorescence spectra pre- and post-photobleaching, and the stability of the photobleaching over a period of two months are analyzed. The photobleached beads are stable over time and their surface functionality is retained. In a high-sensitivity LX-200 system using photobleached magnetic beads, human interleukin-8 is detected with a threefold improvement in detection limit and signal-to-noise ratio over results achievable with nonbleached beads. Since many contemporary immunoassays rely on magnetic beads as capture surfaces, prebleaching the beads may significantly improve the analytical performance of these assays. Moreover, nonmagnetic beads with low autofluorescence are also successfully photobleached, suggesting that photobleaching can be applied to various capture surfaces used in fluorescence-based assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201803751 | DOI Listing |
Talanta
January 2025
Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China; Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China. Electronic address:
Respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in infants and elderly individuals, leading to hospitalisation and potentially fatal outcomes, posing a serious threat to global health and economy. This study proposes a smartphone-based mobile digital pressure sensor (smartphone-MDPS) for the quantitative detection of the RSV fusion protein (RSV-F) in clinical nasopharyngeal samples. The smartphone-MDPS utilized two monoclonal antibodies (mAbs) specific to the F protein, of which mAb1 was conjugated with Au@PtNPs (Au@PtNPs-mAb1) as the detection antibody and mAb2 was coupled with magnetic beads (MB-mAb2) as a coating antibody to establish a novel sandwich immunoassay.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom. Electronic address:
Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.
View Article and Find Full Text PDFTalanta
December 2024
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:
Tetracycline (TC) is widely used in veterinary medicine and animal feed; however, TC residues in food pose a risk to human health. Thus, the sensitive and selective detection of TC is needed to ensure food safety. Herein, we developed a CRISPR-Cas12a biosensor with competitive aptamer binding to detect TC residues.
View Article and Find Full Text PDFLab Chip
January 2025
School of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs.
View Article and Find Full Text PDFNat Food
January 2025
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
Accurate, sensitive and multiplexed detection of food-borne pathogens is crucial for assessing food safety risks. Here we present a digital DNA-amplification-free nucleic acid detection assay to achieve multiplexed and ultrasensitive detection of three food-borne pathogens. We used mesophilic Clostridium butyricum argonaute and magnetic beads in a digital carrier system (d-MAGIC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!