Hepatic Cytochrome P450 Activity and Nitric Oxide Production During Multiple Ovalbumin Challenges.

Eur J Drug Metab Pharmacokinet

Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, Tokushima, 770-8514, Japan.

Published: June 2019

Background And Objectives: Mast cell-mediated allergic diseases are a significant global health problem. Nitric oxide (NO) produced by acute type 1 allergies greatly suppresses hepatic cytochrome P450 (CYP) metabolism. A recent in vitro study demonstrated that repeated FcεRI-mediated activation intrinsically modulates mast cell function. We investigated the effect of ovalbumin (OVA) challenges on CYP activity and NO production under real immune responses.

Methods: After repeated sensitization with OVA once a week, serum nitrate plus nitrite (NOx) and total plasma immunoglobulin E concentrations were measured using commercially available kits. Hepatic microsomal CYP-specific activities and protein expression were determined using typical substrates and by western blot, respectively. In the liver, the levels of inducible NO synthase (iNOS), F4/80, and c-kit mRNA were determined by real-time polymerase chain reaction. Hepatic total NOS activity was measured using a colorimetric assay kit.

Results: When mice received multiple OVA challenges, the 11th sensitization elevated NOx concentrations in serum and suppressed the activities of five major CYPs without altering protein expression levels. After the 7th, 11th, and 15th sensitizations, F4/80-positive Kupffer cell and hepatic c-kit-dependent mast cell mRNA levels were similar to those of the control. The 7th and 11th sensitizations increased hepatic iNOS mRNA expression to 15-fold and threefold above control levels, respectively, but did not enhance the total NOS activity in the liver.

Conclusions: Multiple OVA challenges, unlike acute sensitization, greatly reduced serum NOx levels. The challenge-suppressed hepatic CYP metabolism was likely related to the increased serum NOx. Serum NOx may be an endogenous marker for CYP metabolism inhibition in type 1 allergic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13318-018-0527-1DOI Listing

Publication Analysis

Top Keywords

cyp metabolism
12
ova challenges
12
serum nox
12
hepatic cytochrome
8
cytochrome p450
8
nitric oxide
8
allergic diseases
8
mast cell
8
protein expression
8
total activity
8

Similar Publications

Ethnic disparities in HbA1c and hypoglycemia among youth with type 1 diabetes: beyond access to technology, social deprivation and mean blood glucose.

BMJ Open Diabetes Res Care

January 2025

Diabetes and Endocrinology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK

Introduction: The UK national pediatric diabetes audit reports higher HbA1c for children and young people (CYP) with type 1 diabetes (T1D) of Black ethnicity compared with White counterparts. This is presumably related to higher mean blood glucose (MBG) due to lower socioeconomic status (SES) and less access to technology. We aimed to determine if HbA1c ethnic disparity persists after accounting for the above variables.

View Article and Find Full Text PDF

Exploration of the Role of Cyclophilins in Established Hepatitis B and C Infections.

Viruses

December 2024

INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France.

Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication of diverse viruses including hepatitis B and C viruses (HBV and HCV). Amongst the Cyp family, the molecular mechanisms underlying the antiviral effects of CypA have been investigated in detail, but potential roles of other Cyps are less well studied in the context of viral hepatitis.

View Article and Find Full Text PDF

Cannabidiol (CBD) is one of the major phytochemical constituents of cannabis, , widely recognized for its therapeutic potential. While cannabis has been utilized for medicinal purposes since ancient times, its psychoactive and addictive properties led to its prohibition in 1937, with only the medical use being reauthorized in 1998. Unlike tetrahydrocannabinol (THC), CBD lacks psychoactive and addictive properties, yet the name that suggests its association with cannabis has significantly contributed to its public visibility.

View Article and Find Full Text PDF

Technology usage and glycaemic outcomes in a single tertiary centre with an ethnically diverse and socioeconomically deprived cohort of children with type 1 diabetes mellitus.

Front Clin Diabetes Healthc

January 2025

Department of Endocrinology and Diabetes, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom.

Background: The UK National Paediatric Diabetes Audit (NPDA) data reports disparities in Haemoglobin A1c (HbA1c) levels among children and young people (CYP) with Type 1 Diabetes (T1D), with higher levels in those of Black ethnic background and lower socioeconomic status who have less access to technology. We investigate HbA1c differences in a T1D cohort with higher than national average technology uptake where > 60% come from an ethnic minority and/or socioeconomically deprived population.

Design & Methods: Retrospective cross-sectional study investigating the influence of demographic factors, technology use, and socioeconomic status (SES) on glycaemic outcomes.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental condition, predominantly affecting children, characterized by inattention, hyperactivity, and impulsivity. A growing body of evidence has highlighted the potential influence of the gut microbiota on the onset and presentation of ADHD symptoms. The gut microbiota, a diverse microbial ecosystem residing within the gastrointestinal tract, exerts multiple effects on systemic physiology, including immune modulation, metabolic regulation, and neuronal signalling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!