An experimental study was carried out using in pilot-scale constructed wetland systems, operated in parallel to treat raw sewage. Each system consisted of a vertical flow (VF) unit that was filled with biochar as the main media, followed by a horizontal flow (HF) unit filled with crushed cement mortar. Hydraulic loading (HL) ranged 340-680 mm/day was applied on the VF wetland units, where high total nitrogen (TN) mass removal rate (20-23 g N/m d) was obtained, demonstrating that biochar media had a beneficial effect on the degradation of nitrogenous pollutants. Total phosphorus (TP) removal percentage (concentration based) was ≥ 86% in HF wetlands packed with mortar materials. In one system, the flow direction of the sewage was directed by the deployment of downflow pipes and vertical baffles, aiming to facilitate the formation of aerobic and anaerobic zones in the wetland matrices. The effects of such arrangement were analyzed by comparing pollutant removal efficiencies in the two systems. On average, 99, 96, 93, and 86 percentage removals were obtained for ammonia (NH-N), TN, biochemical oxygen demand (BOD), and TP, respectively, during the experiments. Biochar and crushed mortar proved to be a highly effective combination as media in subsurface flow constructed wetlands for wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3637-zDOI Listing

Publication Analysis

Top Keywords

biochar crushed
8
crushed mortar
8
flow unit
8
unit filled
8
biochar
4
mortar
4
mortar treatment
4
treatment wetlands
4
wetlands enhance
4
removal
4

Similar Publications

This research investigated the properties of modified cementitious composites including water purification from heavy metal-zinc. A new method for characterizing the immobilization properties of tested modifiers was established. Several additions had their properties investigated: biochar (BC), active carbon (AC), nanoparticulate silica (NS), copper slag (CS), iron slag (EAFIS), crushed hazelnut shells (CHS), and lightweight sintered fly ash aggregate (LSFAA).

View Article and Find Full Text PDF

L. is a species commonly grown in regions of the Northern Hemisphere, and is a good candidate to be cultivated in marginal lands. Plants coming from a pruning performed in a natural population located in Spain were used to assess the yield and quality of different products obtained following the cascade principle.

View Article and Find Full Text PDF

Soursop () Properties and Perspectives for Integral Valorization.

Foods

March 2023

Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil.

The increased international interest in the properties of soursop () alerts us to the sustainability of productive chain by-products, which are rich in phytochemicals and other properties justifying their industrial application in addition to reducing the environmental impact and generating income. Chemical characteristics of soursop by-products are widely known in the scientific community; this fruit has several therapeutic effects, especially its leaves, enabling it to be used by the pharmaceutical industry. Damaged and non-standard fruits (due to falling and crushing) (30-50%), seeds (3-8.

View Article and Find Full Text PDF

To mitigate the environmental harm associated with high-input agriculture, arable farmers are increasingly required to maintain productivity while reducing inputs of synthetic fertilizers. Thus, a diverse range of organic products are now being investigated in terms of their value as alternative fertilizers and soil amendments. This study used a series of glasshouse trials to investigate the effects of an insect frass-based fertilizer derived from black soldier fly waste [HexaFrass™, Meath, Ireland] and biochar on four cereals grown in Ireland (barley, oats, triticale, spelt) as animal feed and for human consumption.

View Article and Find Full Text PDF

Performance study of an innovative concept of hybrid constructed wetland-extensive green roof with growing media amended with recycled materials.

J Environ Manage

April 2023

Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, Prague 6, 166 29, Czech Republic; Czech Technical University in Prague, University Centre for Energy Efficient Buildings, Třinecká 1024, Buštehrad, 273 43, Czech Republic.

Implementation of green roofs requires a large amount of primary material, especially for constructing the growing media layer. In addition, irrigation of green roofs with potable water is uneconomical and unsustainable. The novel hybrid green roof system proposed in this paper is in line with the principles of circular economy as it incorporates recycled materials into green roof growing media and greywater for irrigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!