Most cases of posttraumatic ankle osteoarthritis (PTAOA) represent a sequela of ankle fractures. The cytoplasmic polyadenylation element-binding protein 1 (CPEB1) is an RNA binding protein that controls protein expression. Here, we report the previously unappreciated association of CPEB1 with PTAOA. We found that CPEB1 was upregulated in articular cartilage from patients with PTAOA. Additionally, its expression level positively correlated with disease severity. In human primary chondrocytes cultured in vitro, CPEB1 was upregulated when treated with pro-inflammatory cytokines, i.e., IL-1β and TNF-α, suggesting that the observed CPEB1 upregulation in articular cartilage of PTAOA patients may be attributed to local inflammatory milieu. Functionally, CPEB1 overexpression aggravated the catabolic effect of IL-1β on chondrocytes in vitro, and vice versa, its knockdown reduced this effect, together implying a detrimental role of CPEB1 involved in OA progression. In sum, our study identifies CPEB1 as a potential regulator of disease progression of PTAOA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-018-0920-6DOI Listing

Publication Analysis

Top Keywords

cpeb1
9
posttraumatic ankle
8
ankle osteoarthritis
8
catabolic il-1β
8
il-1β chondrocytes
8
cpeb1 upregulated
8
articular cartilage
8
ptaoa
5
cpeb1 expression
4
expression correlates
4

Similar Publications

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

PATL2 mutations affect human oocyte maternal mRNA homeostasis and protein interactions in cell cycle regulation.

Cell Biosci

December 2024

Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.

Results: This study uncovers three novel mutations (c.

View Article and Find Full Text PDF

In mammals, oocytes are arrested in prophase of meiosis I for long periods of time. Prophase arrest is critical for reproduction because it allows oocytes to grow to their full size to support meiotic maturation and embryonic development. Prophase arrest requires the inhibitory phosphorylation of the mitotic kinase CDK1.

View Article and Find Full Text PDF

Effect of Gossypol on Gene Expression in Swine Granulosa Cells.

Toxins (Basel)

October 2024

College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.

Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and 12.

View Article and Find Full Text PDF

Metabolic disorders such as insulin resistance and type 2 diabetes are associated with brain dysfunction and cognitive deficits, although the underpinning molecular mechanisms remain elusive. Epigenetic factors, such as non-coding RNAs, have been reported to mediate the molecular effects of nutrient-related signals. Here, we investigated the changes of miRNA expression profile in the hippocampus of a well-established experimental model of metabolic disease induced by high fat diet (HFD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!