AI Article Synopsis

  • The endothelin (EDN) axis, particularly EDN1 and its receptor EDNRA, plays a role in cancer progression, prompting a study on their genetic variants and their effect on papillary thyroid cancer (PTC) development.
  • A study with 113 PTC patients and 185 controls found that the GG genotype of the EDNRA +70 SNP significantly increased PTC risk, and certain genotypes of EDN1 were linked to later onset of PTC, especially in males.
  • The research highlighted the relevance of specific SNPs in EDNRA and EDN1 in understanding PTC risk and onset patterns.

Article Abstract

The endothelin (EDN) axis (EDN1 and EDN1 receptor A, EDNRA) is involved in cellular growth, differentiation, invasiveness, and tumor progression in several cancers. We wanted to examine the possible impact of single nucleotide polymorphisms (SNPs) of EDN1 and EDNRA genes on papillary thyroid cancer (PTC) development and general characteristics of PTC. Study population consist of 113 PTC patients and 185 controls. EDN1 (G5665T, T-1370G) and EDNRA (C TT70G, G-231A) SNPs were investigated by real-time PCR. The GG genotype of EDNRA + 70 SNP was associated with threefold increased PTC risk (p = 0.01), and the combined CG + GG genotype was 2.48 fold higher among PTC patients compared to controls. The variant EDNRA - 231 allele was overrepresented in PTC patients according to controls (p = 0.05). The combined GT + TT genotype of EDN1 5665 SNP was related with late (age after 40 years) PTC onset (p = 0.04), and was more prominent among male patients with PTC according to females (p = 0.03). No significant associations between PTC and - 1370 SNP were found. There were no relationships between laboratory parameters and investigated polymorphisms. The EDNRA + 70 SNP was associated with PTC development. The EDN1 5665 SNP was linked with increased risk for late PTC onset and was more prominent among male patients with PTC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-018-4461-8DOI Listing

Publication Analysis

Top Keywords

ptc
12
ptc patients
12
papillary thyroid
8
thyroid cancer
8
ptc development
8
snp associated
8
edn1 5665
8
5665 snp
8
ptc onset
8
prominent male
8

Similar Publications

Amorphous/Crystalline ZrO with Oxygen Vacancies Anchored Nano-Ru Enhance Reverse Hydrogen Spillover in Alkaline Hydrogen Evolution.

Small

January 2025

State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Hydrogen spillover-based binary (HSBB) system has attracted significant attention in alkaline hydrogen evolution reaction (HER). Accelerating hydrogen spillover in the HSBB system is crucial for the HER activity. Herein, a highly efficient HSBB system is developed by anchoring nano-Ru on oxygen vacancy (Vo) rich amorphous/crystal ZrO.

View Article and Find Full Text PDF

Purpose: Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. Although its mortality rate is low, some patients experience cancer recurrence during follow-up. In this study, we investigated the accuracy of a novel multimodal model by simultaneously analyzing numeric and time-series data to predict recurrence in patients with PTC after thyroidectomy.

View Article and Find Full Text PDF

Background: Papillary thyroid carcinoma (PTC) is the most common type of endocrine tumor, and its incidence is on the rise. Observational studies have linked cathepsins, an endolysosomal cysteine protein hydrolase, to the malignant progression of several tumors, including PTC. However, the causal relationship between cathepsins and PTC remains unclear.

View Article and Find Full Text PDF

Neural Network and Logistic Regression Models Based on Ultrasound Radiomics and Clinical-Pathological Features to Predict Occult Level II Lymph Node Metastasis in Papillary Thyroid Carcinoma.

Acad Radiol

January 2025

Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (J-W.F., H.L.); Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital,School of Medicine, Zhejiang University, Hangzhou, China (H.L.); College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China (H.L.). Electronic address:

Rationale And Objectives: Papillary thyroid carcinoma (PTC) often metastasizes to lateral cervical lymph nodes, especially in level II. This study aims to develop predictive models to identify level II lymph node metastasis (LNM), guiding selective neck dissection (SND) to minimize unnecessary surgery and morbidity in low-risk patients.

Methods: A retrospective cohort of 313 PTC patients who underwent modified radical neck dissection (MRND) between October 2020 and January 2023 was analyzed.

View Article and Find Full Text PDF

Chorionic trophoblast cells demonstrate functionally different phenotypes from placental trophoblasts.

Biol Reprod

January 2025

Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, United States of America.

Chorionic trophoblast cells (CTCs) are one of the principal components of the fetal membrane and join with the decidua to form a feto-maternal interface. Recent success in isolating CTCs dealt with two separate questions: (1) The necessity of highly enriched and defined media with inhibitors of oxidative stress and cell transition and their impact on growth and trophoblast phenotype, (2) The functional differences between CTCs and other placental trophoblast lineages of cells (placental cytotrophoblast cells [PTC], and extravillous trophoblast [EVT]). CTCs were cultured either in defined media with various inhibitors or in media from which inhibitors were removed individually.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!