A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aqueous MEA and Ammonia Sorption-Induced Damage in Keratin Fibers. | LitMetric

Aqueous MEA and Ammonia Sorption-Induced Damage in Keratin Fibers.

ACS Omega

Surface and Particles Engineering Laboratory, Department of Chemical Engineering, Imperial College London, Kensington, London SW7 2BY, U.K.

Published: October 2018

The sorption of aqueous monoethanolamine (MEA) and ammonia solutions in keratin fibers and its subsequent effect on their mechanical performance has been investigated. The diffusion kinetics of MEA into keratin fibers for 0.1, 1.0, and 5 v/v % MEA in water at 30 and 50 °C were found to exhibit two clear regimes of absorption behavior: a linear Fickian diffusion regime for initial times up to 100 min, after which a second slower uptake process was observed. Single fiber tensile tests showed that the Young's modulus and the tensile failure stress for 5% MEA-treated fibers, compared to untreated fibers, were 25% lower after 1 h of treatment and 50% lower after 9 h of treatment. Aqueous treatments of 0.1 and 1% MEA, as well as 0.6 and 3% aqueous ammonia, had no measurable effect on either Young's modulus or tensile failure stress for the fibers. Scanning electron microscopy images and protein content analysis confirmed that keratin fibers exposed to 5% MEA solution exhibited significant surface damage as well as high levels of protein loss. This study confirms for the first time the important damage hair treatments containing 5% aqueous MEA can cause on keratin fibers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217691PMC
http://dx.doi.org/10.1021/acsomega.8b01189DOI Listing

Publication Analysis

Top Keywords

keratin fibers
20
aqueous mea
8
mea ammonia
8
fibers
8
mea keratin
8
young's modulus
8
modulus tensile
8
tensile failure
8
failure stress
8
lower treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!