Reflex Carbocation Release from Covalent Molecules by Endogenous Free Radicals.

ACS Omega

EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom.

Published: October 2018

Carbocations are pervasive in contemporary organic synthesis, so new and innocuous methods of making them are always desirable. A theoretical approach revealed that compounds in which radical generation takes place may release carbocations advantageously. The radical types and molecular substructures that promote this effect were identified. The best substructures were found to be 1,3-dicarbonyl compounds, particularly those based on the Meldrum's acid theme. Sulfate esters and dithiane rings could also be employed. Radicals generated on oxygen atoms or ethyne units were particularly effective. For these species, carbocation release could be reflex, that is, concurrent with radical generation. Only small radical enhancements were observed for release of lithium cations because of the ionic character of most of the precursors. Ethyne units could be incorporated as spacers between the radical center and the site of carbocation generation. Moreover, the enhancement was transmitted down polyethyne chains of at least six units.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217609PMC
http://dx.doi.org/10.1021/acsomega.8b02307DOI Listing

Publication Analysis

Top Keywords

carbocation release
8
radical generation
8
ethyne units
8
radical
5
reflex carbocation
4
release
4
release covalent
4
covalent molecules
4
molecules endogenous
4
endogenous free
4

Similar Publications

Herein, we establish the release of aliphatic acids in water upon excitation of 7-diethylaminothio-4-coumarinyl derivatives encapsulated within the organic host octa acid (OA). The 7-diethylaminothio-4-coumarinyl skeleton, employed here as the trigger, photoreleases caged molecules from the excited triplet state, in contrast to its carbonyl analogue, where the same reaction is known to occur from the excited singlet state. Encapsulation in OA solubilizes molecules in water that are otherwise water-insoluble, and retains the used trigger within itself following the release of the aliphatic acid.

View Article and Find Full Text PDF

Photoactive -hydroxysulfonamides photocaged with the (6-bromo-7-hydroxycoumarin-4-yl)methyl chromophore have been successfully synthesized, and the mechanisms of photodecomposition investigated for two of the compounds. Upon irradiation up to 97% of a diagnostic marker for (H)NO release, sulfinate was observed for the trifluoromethanesulfonamide system. In the absence of a species that reacts rapidly with (H)NO, (H)NO instead reacts with the carbocation intermediate to ultimately generate ()-BHC-oxime and ()-BHC-oxime.

View Article and Find Full Text PDF

We describe a method for the synthesis of various 2-silyloxy-2-norbornen-7-ones by exploiting the specific reactivity of the 1,4-bis(silyloxy)-1,3-cyclopentadiene framework, which is generated by the silylation of a 2,2-disubstituted-1,3-cyclopentanedione bearing a picolinoyloxy group at the 2' position of its C-2 side chain. The release of the acyloxy group during the reaction generates carbocations that are then attacked by silyloxy-substituted carbons in the 1,4-bis(silyloxy)-1,3-cyclopentadiene moiety skeleton, forming a 4,5-cis-fused ring skeleton. Skeletal rearrangement of the bicyclic core results in the formation of the corresponding 2-silyloxy-2-norbornen-7-one.

View Article and Find Full Text PDF

A Strain-Promoted Divergent Chemical Steroidation Unveils Potent Anti-Inflammatory Pseudo-Steroidal Glycosides.

J Am Chem Soc

May 2024

Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003 China.

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf) catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with -, -, -, -, and -nucleophiles to generate structurally diverse steroid derivatives.

View Article and Find Full Text PDF

Development of a Two-Photon-Responsive Chromophore, 2-(-Aminophenyl)-5,6-dimethoxy-1-(hydroxyinden-3-yl)methyl Derivative, as a Photoremovable Protecting Group.

J Org Chem

April 2024

Department of Chemistry, Graduate School of Advance Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.

Photoremovable protecting groups (PPGs) are powerful tools that are widely used to investigate biological events in cells. An important requirement for PPGs is the efficient release of bioactive molecules by using visible to near-infrared light in the biological window (650-1350 nm). In this study, we report a new two-photon (2P)-responsive PPG, 2-(-aminophenyl)-5,6-dimethoxy-1-(hydroxyinden-3-yl)methyl, with a donor-π-donor cyclic stilbene structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!