A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uracil moieties in genomic DNA. | LitMetric

parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bias of the genome poses further constraints for DNA synthesis. Taken together, these circumstances may allow appearance of damaged bases in the DNA. Here, we focus on uracil that may arise in DNA either via oxidative deamination or thymine-replacing incorporation. We determine the level of uracil at the ring, trophozoite, and schizont intraerythrocytic stages and evaluate the base-excision repair potential of to deal with uracil-DNA repair. We find approximately 7-10 uracil per million bases in the different parasite stages. This level is considerably higher than found in other wild-type organisms from bacteria to mammalian species. Based on a systematic assessment of genome and transcriptome databases, we conclude that uracil-DNA repair relies on one single uracil-DNA glycosylase and proceeds through the long-patch base-excision repair route. Although potentially efficient, the repair route still leaves considerable level of uracils in parasite DNA, which may contribute to mutation rates in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212640PMC
http://dx.doi.org/10.1002/2211-5463.12458DOI Listing

Publication Analysis

Top Keywords

intraerythrocytic stages
8
dna synthesis
8
base-excision repair
8
uracil-dna repair
8
repair route
8
dna
6
repair
5
uracil moieties
4
moieties genomic
4
genomic dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!