Connect 4: A Novel Paradigm to Elicit Positive and Negative Insight and Search Problem Solving.

Front Psychol

Learning and Teaching Institute, University of Chester, Chester, United Kingdom.

Published: October 2018

Researchers have typically defined insight as a sudden new idea or understanding accompanied by an emotional feeling of Aha. Recently, examples of negative insight in everyday creative problem solving have been identified. These are seen as sudden and sickening moments of realization experienced as an Uh-oh rather than Aha. However, such experiences have yet to be explored from an experimental perspective. One barrier to doing so is that methods to elicit insight in the laboratory are constrained to positive insight. This study therefore aimed to develop a novel methodology that elicits both positive and negative insight solving, and additionally provides the contrasting experiences of analytic search solving in the same controlled conditions. The game of Connect 4 was identified as having the potential to produce these experiences, with each move representing a solving episode (where best to place the counter). Eighty participants played six games of Connect 4 against a computer and reported each move as being a product of positive search, positive insight, negative search or negative insight. Phenomenological ratings were then collected to provide validation of the experiences elicited. The results demonstrated that playing Connect 4 saw reporting of insight and search experiences that were both positive and negative, with the majority of participants using all four solving types. Phenomenological ratings suggest that these reported experiences were comparable to those elicited by existing laboratory methods focused on positive insight. This establishes the potential for Connect 4 to be used in future problem solving research as a reliable elicitation tool of insight and search experiences for both positive and negative solving. Furthermore, Connect 4 may be seen to offer more true to life solving experiences than other paradigms where a series of problems are solved working toward an overall superordinate goal rather than the presentation of stand-alone and un-related problems. Future work will need to look to develop versions of Connect 4 with greater control in order to fully utilize this methodology for creative problem solving research in experimental psychology and neuroscience contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209650PMC
http://dx.doi.org/10.3389/fpsyg.2018.01755DOI Listing

Publication Analysis

Top Keywords

positive negative
16
negative insight
16
problem solving
16
insight search
12
positive insight
12
insight
11
solving
10
positive
8
creative problem
8
experiences
8

Similar Publications

Validating the Accuracy of Parkinson's Disease Clinical Diagnosis: A UK Brain Bank Case-Control Study.

Ann Neurol

January 2025

Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy.

Objective: Despite diagnostic criteria refinements, Parkinson's disease (PD) clinical diagnosis still suffers from a not satisfying accuracy, with the post-mortem examination as the gold standard for diagnosis. Seminal clinicopathological series highlighted that a relevant number of patients alive-diagnosed with idiopathic PD have an alternative post-mortem diagnosis. We evaluated the diagnostic accuracy of PD comparing the in-vivo clinical diagnosis with the post-mortem diagnosis performed through the pathological examination in 2 groups.

View Article and Find Full Text PDF

Background: Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a biomarker for the early diagnosis of AKI.

Objectives: To evaluate uNGAL in dogs with non-associative immune mediated hemolytic anemia (IMHA) and to evaluate whether uNGAL correlates with disease severity markers, negative prognostic indicators and outcome.

Animals: Twenty-two dogs with non-associative IMHA and 14 healthy dogs.

View Article and Find Full Text PDF

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

State-dependent neurovascular modulation induced by transcranial ultrasound stimulation.

Med Biol Eng Comput

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China.

Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses.

View Article and Find Full Text PDF

The trajectory of crime: Integrating mouse-tracking into concealed memory detection.

Behav Res Methods

January 2025

Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, 999078, Macau, China.

The autobiographical implicit association test (aIAT) is an approach of memory detection that can be used to identify true autobiographical memories. This study incorporates mouse-tracking (MT) into aIAT, which offers a more robust technique of memory detection. Participants were assigned to mock crime and then performed the aIAT with MT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!