Background: Sesquiterpene lactones are plant-derived, natural, bioactive molecules often used against inflammatory diseases in traditional Chinese medicines. Recently, sesquiterpene lactones have been reported to exhibit potent anticancer activity. In the present study, we have investigated the anticancer activity of Brevilin A, a sesquiterpene lactone component of , against U87 glioblastoma cells.

Materials And Methods: The cell proliferation was determined by MTT assay. Cell morphological changes were observed by phase-contrast microscopy. Flow cytometry was used to measure apoptosis. Glutathione (GSH), ROS generation, and mitochondrial membrane potential were measured using commercially available kits. The expression of proteins was measured by Western blotting analysis.

Results: Brevilin A inhibited the proliferation of, and induced severe morphological changes and apoptotic cell death in, U87 glioblastoma cells in a dose-dependent manner. Further mechanistic study revealed that Brevilin A induces oxidative stress, as evident from ROS generation, GSH depletion, and increased phosphorylation of stress-activated proteins p38 and JNK. Furthermore, Brevilin A bcl-xl/bak ratio, decreased mitochondrial membrane potential and induced cytochrome c release from mitochondria into cytosol in a dose-dependent manner. Finally, Brevilin A decreased the expression of Xiap and increased the expression of cleaved forms of caspase-9 and -3 and PARP in a dose-dependent manner.

Conclusion: Collective findings demonstrated that Brevilin A is a potent, anticancer, bioactive molecule and it effectively induces apoptosis in U87 glioblastoma cells, which is associated with induction of oxidative stress and mitochondrial dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198872PMC
http://dx.doi.org/10.2147/OTT.S179730DOI Listing

Publication Analysis

Top Keywords

u87 glioblastoma
16
oxidative stress
12
glioblastoma cells
12
apoptosis u87
8
sesquiterpene lactones
8
potent anticancer
8
anticancer activity
8
morphological changes
8
ros generation
8
mitochondrial membrane
8

Similar Publications

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Targeting of diseased cells is one of the most urgently needed prerequisites for a next generation of potent pharmaceuticals. Different approaches pursued fail mainly due to a lack of specific surface markers. Developing an RNA-based methodology, we can now ensure precise cell targeting combined with selective expression of effector proteins for therapy, diagnostics or cell steering.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly aggressive brain cancer associated with poor survival rates. We developed novel mesoporous silica nanoparticles (MSNs)-based nanocarriers for pH-responsive delivery of a therapeutic drug Paclitaxel (PTX) to GBM tumor cells. The pores of MSNs are loaded with PTX, which is retained by β-cyclodextrin (CD) moieties covalently linked to the pore entrances through a hydrazone linkage, which is cleavable in weakly acidic environment.

View Article and Find Full Text PDF

Raddeanin A (RA) Inhibited EMT and Stemness in Glioblastoma via downregulating Skp2.

J Cancer

January 2025

Cancer Prevention and Treatment Institute of Chengdu, Department of Neurosurgery, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, China.

Glioblastoma (GBM), notorious for its poor prognosis, stands as a formidable challenge within the central nervous system tumor category, primarily due to its intricate pathology that encompasses stemness and the epithelial-mesenchymal transition (EMT). The ubiquity of S phase kinase-associated protein 2 (Skp2) overexpression in GBM, a protein implicated in both EMT and stemness traits, correlates with increased drug resistance, elevated tumor grades, and adverse outcomes. This investigation delves into the impact of Raddeanin A (RA), a triterpenoid compound extracted from Anemone raddeana Regel, on GBM, with a special focus on its influence over Skp2 expression levels.

View Article and Find Full Text PDF

Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma.

Comput Methods Biomech Biomed Engin

January 2025

Department of Neurology, Chang'An Hospital, Economic and Technological Development District, Xi'an, China.

The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. This study established a 11-lncRNAs prognostic signature. Differential gene expression analysis, univariate and multivariate Cox regression analyses and the least absolute shrinkage and selection operator (LASSO) regression algorithm were used to identify prognostic ferroptosis-related genes and establish a nomogram model of risk score.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!