Different agonists induce distinct single-channel conductance states in TRPV1 channels.

J Gen Physiol

Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México

Published: December 2018

The TRPV1 ion channel is a membrane protein that is expressed in primary afferent nociceptors, where it is activated by a diverse array of stimuli. Our prior work has shown that this channel is activated by lysophosphatidic acid (LPA), an unsaturated lysophospholipid that is produced endogenously and released under certain pathophysiological conditions, resulting in the sensation of pain. Macroscopic currents activated by saturating concentrations of LPA applied to excised membrane patches are larger in magnitude than those activated by saturating concentrations of capsaicin, which causes near-maximal TRPV1 open probability. Here we show that activation of TRPV1 by LPA is associated with a higher single-channel conductance than activation by capsaicin. We also observe that the effects of LPA on TRPV1 are not caused by an increase in the surface charge nor are they mimicked by a structurally similar lipid, ruling out the contribution of change in membrane properties. Finally, we demonstrate that the effects of LPA on the unitary conductance of TRPV1 depend upon the presence of a positively charged residue in the C terminus of the channel, suggesting that LPA induces a distinct conformational change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279355PMC
http://dx.doi.org/10.1085/jgp.201812141DOI Listing

Publication Analysis

Top Keywords

single-channel conductance
8
activated saturating
8
saturating concentrations
8
effects lpa
8
trpv1
6
lpa
6
agonists induce
4
induce distinct
4
distinct single-channel
4
conductance states
4

Similar Publications

Water, Solute, and Ion Transport in De Novo-Designed Membrane Protein Channels.

ACS Nano

December 2024

Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

Biological organisms engineer peptide sequences to fold into membrane pore proteins capable of performing a wide variety of transport functions. Synthetic de novo-designed membrane pores can mimic this approach to achieve a potentially even larger set of functions. Here we explore water, solute, and ion transport in three de novo designed β-barrel membrane channels in the 5-10 Å pore size range.

View Article and Find Full Text PDF

Identification and Analysis of Reference-Independent Movement Event-Related Desynchronization.

Biomed Phys Eng Express

December 2024

Biomechatronics Laboratory Mechatronics Department, University of Sao Paulo, Av Prof Mello Moraes 2331, Cidade Universitaria, 05508-030 Sao Paulo-SP, Sao Paulo, 05508-900, BRAZIL.

Characterization of the electroencephalography (EEG) signals related to motor activity, such as alpha- and beta-band motor event-related desynchronizations (ERDs), is essential for Brain Computer Interface (BCI) development. Determining the best electrode combination to detect the ERD is crucial for the success of the BCI. Considering that the EEG signals are bipolar, this involves the choice of the main and reference electrodes.

View Article and Find Full Text PDF

Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.

J Membr Biol

December 2024

Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India.

Protein nanopores are emerging as versatile single-molecule sensors with broad applications in DNA and protein sequencing. However, their narrow size restricts the range of detectable analytes, necessitating the development of advanced nanopores to broaden their applications in biotechnology. This review highlights a natural hetero-oligomeric porin, Nocardia farcinica porin AB (NfpAB), based on the Gram-positive mycolata, Nocardia farcinica.

View Article and Find Full Text PDF

KCNQ1 potassium channels play a pivotal role in the physiology and pathophysiology of several human excitable and epithelial tissues. The latest cryo-electron microscopy (cryo-EM) structures provide unique insights into channel function and pharmacology, opening avenues for different therapeutic strategies against human diseases associated with KCNQ1 mutations. However, these structures also raise fundamental questions about the mechanisms of ion permeation.

View Article and Find Full Text PDF

Quantum chemical calculations were employed to construct Jablonski diagrams for a series of phenolic carbonyls, including vanillin, iso-vanillin, 4-hydroxybenzaldehyde, syringaldehyde, and coniferyl aldehyde. These molecules can enter the Earth's atmosphere from forest fire emissions and participate in photochemical reactions within the atmospheric condensed phase, including cloud and fog droplets and aqueous aerosol particles. This photochemistry alters the composition of light-absorbing organic content, or brown carbon, in droplets and particles through the formation and destruction of key chromophores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!