Co-delivery of siRNA and etoposide to cancer cells using an MDEA esterquat based drug delivery system.

Eur J Pharm Sci

Section for Biotechnology, Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark. Electronic address:

Published: January 2019

Cancer has become the leading cause of death in many countries. Chemotherapy is a key component in the treatment of most cancers but has limited efficacy if the cancer develops resistance to the treatment over time and recur. RNA interference may be used to reduce the production of the proteins responsible for chemotherapeutic resistance. Small interfering RNAs (siRNA) may be used to induce RNA interference but the application of these to cancer cells is hampered by poor serum stability and delivery to their cytoplasmic site of activity. This work introduces a novel nanoparticle delivery system for siRNA and hydrophobic anticancer drugs. The system is based on a cationic MDEA esterquat, which is widely and safely used in personal care products but has never been assessed for drug delivery applications. We show that MDEA forms spherical compact nanoparticles when combined with siRNA that delivers the siRNA to cancer cells where it induces gene silencing. By combining DOPE and MDEA in ratios of 2:1 and 3:1, even higher gene silencing levels (>90%) may be achieved. The system is capable of combinational therapy by co-delivering siRNA and the chemotherapeutic drug etoposide to cancer cells and these particles both induce gene silencing and chemotherapy induced cell death. We believe the present system may be used for intra-tumoral injection of chemotherapy in solid chemotherapy resistant tumors and for systemic delivery with further development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2018.10.023DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
gene silencing
12
etoposide cancer
8
mdea esterquat
8
drug delivery
8
delivery system
8
rna interference
8
cancer
6
delivery
5
system
5

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.

Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!