Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Adverse drug events (ADEs) are among the top causes of hospitalization and death. Social media is a promising open data source for the timely detection of potential ADEs. In this paper, we study the problem of detecting signals of ADEs from social media.
Methods: Detecting ADEs whose drug and AE may be reported in different posts of a user leads to major concerns regarding the content authenticity and user credibility, which have not been addressed in previous studies. Content authenticity concerns whether a post mentions drugs or adverse events that are actually consumed or experienced by the writer. User credibility indicates the degree to which chronological evidence from a user's sequence of posts should be trusted in the ADE detection. We propose AC-SPASM, a Bayesian model for the authenticity and credibility aware detection of ADEs from social media. The model exploits the interaction between content authenticity, user credibility and ADE signal quality. In particular, we argue that the credibility of a user correlates with the user's consistency in reporting authentic content.
Results: We conduct experiments on a real-world Twitter dataset containing 1.2 million posts from 13,178 users. Our benchmark set contains 22 drugs and 8089 AEs. AC-SPASM recognizes authentic posts with F - the harmonic mean of precision and recall of 80%, and estimates user credibility with precision@10 = 90% and NDCG@10 - a measure for top-10 ranking quality of 96%. Upon validation against known ADEs, AC-SPASM achieves F = 91%, outperforming state-of-the-art baseline models by 32% (p < 0.05). Also, AC-SPASM obtains precision@456 = 73% and NDCG@456 = 94% in detecting and prioritizing unknown potential ADE signals for further investigation. Furthermore, the results show that AC-SPASM is scalable to large datasets.
Conclusions: Our study demonstrates that taking into account the content authenticity and user credibility improves the detection of ADEs from social media. Our work generates hypotheses to reduce experts' guesswork in identifying unknown potential ADEs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2018.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!