Resonant two-photon ionization spectroscopy has been used to investigate the spectra of the diatomic late transition metal silicides, MSi, M = Fe, Ru, Os, Co, Rh, Ir, Ni, and Pt, in the vicinity of the bond dissociation energy. In these molecules, the density of vibronic states is so large that the spectra appear quasicontinuous in this energy range. When the excitation energy exceeds the ground separated atom limit, however, a new decay process becomes available-molecular dissociation. This occurs so rapidly that the molecule falls apart before it can absorb another photon and be ionized. The result is a sharp drop to the baseline in the ion signal, which we identify as occurring at the thermochemical 0 K bond dissociation energy, D. On this basis, the measured predissociation thresholds provide D = 2.402(3), 4.132(3), 4.516(3), 2.862(3), 4.169(3), 4.952(3), 3.324(3), and 5.325(9) eV for FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi, respectively. Using thermochemical cycles, the enthalpies of formation of the gaseous MSi molecules are derived as 627(8), 700(10), 799(10), 595(8), 599(8), 636(10), 553(12), and 497(8) kJ/mol for FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi, respectively. Likewise, combining these results with other data provides the ionization energies of CoSi and NiSi as 7.49(7) and 7.62(7) eV, respectively. Chemical bonding trends among the diatomic transition metal silicides are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5050934 | DOI Listing |
Carbohydr Polym
March 2025
Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Finding of new environmentally friendly cellulose solvent system is critical for efficient usage of cellulose. In this paper, cellulose solvent based on the mixture of di-tetrabutylammonium hydrogen phosphate and dimethyl sulfoxide (TBAHPO/DMSO) was developed. We found that TBAHPO/DMSO system has excellent solubility of cellulose.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
Thiazole derivatives are biologically relevant molecules, used also in pharmaceutical applications. Herein, we report results for electron attachment to 2-bromo-5-nitrothiazole (BNT) in the gas phase. Employing two crossed electron-molecule beam experiments, we determined the efficiency curves of various fragment anions as a function of the initial electron energy between about 0 and 10 eV as well as the emission angle and kinetic energy distributions of Br- and NO2- ions formed from a resonance near 4 eV.
View Article and Find Full Text PDFJ Chem Phys
January 2025
The University of Alabama, Department of Chemistry and Biochemistry, Shelby Hall, Tuscaloosa, Alabama 35487-0336, USA.
Potential energy curves (PECs) for the spin-free (ΛS) and spin-orbit (Ω) states associated with the four lowest-lying dissociation channels of Na2 and K2 were calculated at the SA-CASSCF/SO-CASPT2/aug-cc-pwCVQZ-DK level. The PECs of Na2 were consistent with the experimental data and with the FS-CCSD (2,0) calculations, reproducing the double-well and the "shelf" character for some of the potentials of the excited states. For K2, the PECs behaved in a similar way and the spectroscopic parameters for the ground and the excited states are in good agreement with the available experimental values.
View Article and Find Full Text PDFJ Mol Model
January 2025
Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
Context: Inspired by the newly synthesized endohedral fullerene T CH@C (1) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes C CH@BC (4), T BH@BC (5), C HO@BC (6), C NH@BC (7), and T C@BC (8) which possess a BC (3) shell isovalent with C, with the neutral D C@BC (9) obtained from C@BC (8) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core-shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor-acceptor interaction between LP(O) → LV(B@BC) in HO@BC (6), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, 457 Zhongshan Road, 116023, Dalian, CHINA.
The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!