A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport of particles driven by the traveling obstacle arrays. | LitMetric

Transport of particles driven by the traveling obstacle arrays.

J Chem Phys

Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.

Published: November 2018

Transport of three types of particles (passive particles, active particles without polar interaction, and active particles with polar interaction) is numerically investigated in the presence of traveling obstacle arrays. The transport behaviors are different for different types of particles. For passive particles, there exists an optimal traveling speed (or the translational diffusion) at which the average velocity of particles takes its maximum value. For active particles without polar interaction, the average velocity of particles is a peaked function of the obstacle traveling speed. The average velocity decreases monotonically with increase of the rotational diffusion for large driving speed, while it is a peaked function of the rotational diffusion for small driving speed. For active particles with polar interaction, interestingly, within particular parameter regimes, active particles can move in the opposite direction to the obstacles. The average velocity of particles can change its direction by changing the system parameters (the obstacles driving speed, the polar interaction strength, and the rotational diffusion).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5049719DOI Listing

Publication Analysis

Top Keywords

active particles
20
polar interaction
20
particles polar
16
average velocity
16
particles
12
velocity particles
12
rotational diffusion
12
driving speed
12
traveling obstacle
8
obstacle arrays
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!