The weathering of mine waste rock can cause release of metal-laden and acidic drainage that requires long-term and costly environmental management. To identify and quantify the geochemical processes and physical transport mechanisms controlling drainage quality, we monitored the weathering of five large-scale (20,000 t) instrumented waste-rock piles of variable and mixed-composition at the Antamina mine, Peru, in a decade-long monitoring program. Fine-grained, sulfidic waste rock with low-carbonate content exhibited high sulfide oxidation rates (>1 g S kg waste rock yr) and within 7 years produced acidic (pH < 3) drainage with high Cu and Zn concentrations in the g L range. In contrast, drainage from coarse, carbonate-rich waste rock remained neutral for >10 years and had significantly lower metal loads. Efficient metal retention (>99%) caused by sorption and secondary mineral formation of e.g., gypsum, Fe-(oxy)hydroxides, and Cu/Zn-hydroxysulfates enforced strong (temporary) controls on drainage quality. Furthermore, reactive waste-rock fractions, as small as 10% of total mass, dominated the overall drainage chemistry from the waste-rock piles through internal mixing. This study demonstrates that a reliable prediction of the timing and quality of waste-rock drainage on practice-relevant spatiotemporal scales requires a quantitative understanding of the prevailing in-situ porewater conditions, secondary mineralogy, and spatial distribution of reactive waste-rock fractions in composite piles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.10.105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!