Crushed stone powder and aluminum ash are industrial wastes, and effective utilization of these wastes has been highly expected. Since the main components of the two wastes are Si, Al and O, those wastes can be used as starting materials for synthesis of zeolites of which some types have been commercialized as catalysts and ion-exchangers. In this study, zeolites A and X well-known as practical materials were successfully synthesized with high purity using the two industrial wastes by a mild process based on two hydrothermal treatments with intermediate acid treatment. In the first hydrothermal treatment at 150 °C, quartz in the crushed stone powder was dissolved and acid-soluble hydroxysodalite (Na(AlSiO)(HO)(OH)) with Si/Al = 1 and sodium aluminosilicate (Na(AlSiO)) were formed. Those compounds were dissolved with HCl aq. solution. The zeolites were successfully synthesized from the second hydrothermal treatment of the yellow dried filtrates at 80 °C in NaOH aq. solution. In the process proposed, removal of Ca from the crushed stone powder was effective to formation of zeolites A and/or X. Selective synthesis of zeolites A and X was achieved by controlling the acid treatment conditions. Furthermore, the effect of the drying condition of the filtrate obtained after the acid treatment was also investigated on the differences in the product phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.10.082 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemistry and Chemical Technology, Manash Kozybayev North Kazakhstan University, Petropavlovsk 150000, Kazakhstan.
The aim of the work was to study the effect of additive concentration on changes in the adhesive and cohesive strength of bitumen. To evaluate the effectiveness of modifiers in the composition of binary and triple bitumen systems in relation to mineral fillers of two grades, the method of determination of the adhesive efficiency and thermodynamic calculations of adhesion and cohesion work were used. The following compounds were used as additives: synthesized from the oil refining waste and (waste sealing liquid).
View Article and Find Full Text PDFWorld J Gastrointest Endosc
January 2025
Department of Gastroenterology, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China.
Background: Bouveret's syndrome is a rare (1%-4%) form of cholelithiasis characterized by gastric outlet obstruction. It presents mainly in elderly women with nausea, vomiting, and abdominal pain. On physical examination, common findings include dehydration signs such as tachycardia, decreased urine output, abdominal discomfort, and distention.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Civil Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam.
The increasing demand for sustainable construction materials has driven the exploration of alternative fillers in asphalt production. Traditional asphalt mixtures rely heavily on natural aggregates and petroleum-based binders, contributing to environmental degradation. This study proposes an innovative solution by utilizing Crushed Recycled Marble Stone Powder (CRMSP) as a sustainable filler in SBS polymer-modified asphalt containing high volumes of recycled tire rubber, addressing both resource depletion and waste management concerns.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Research Institute of Highway Ministry of Transport, Beijing 100088, China.
This study investigated the potential for efficient and resourceful utilization of phosphogypsum (PG) through the preparation of a High-volume Phosphogypsum Cement Stabilized Road Base (HPG-CSSB). The investigation analyzed the unconfined compressive strength (UCS), water stability, strength formation mechanism, microstructure, and pollutant curing mechanism of HPG-CSSB by laser diffraction methods (LD), X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma-mass spectrometry (ICP-MS). The optimal mix ratio of HPG-CSSB was 4% cement, 1% CA2, 35% PG, and 60% graded crushed stone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!