Wastewater discharges lead to the deterioration of receiving waters through treated effluents and by-passes, combined and sanitary sewer overflows, and cross-connections to storm sewers. The influence of weather conditions on fecal indicator bacteria, pathogens and wastewater micropollutants on raw and treated sewage concentrations has not been extensively characterized. However, such data are needed to understand the effects of by-pass discharges and incomplete treatment on receiving waters. A water resource recovery facility was monitored for pathogenic parasites (Cryptosporidium oocysts, Giardia cysts), fecal indicator bacteria (Escherichia coli, Clostridium perfringens), and wastewater micropollutants (caffeine, carbamazepine, 2-hydroxycarbamazepine, acesulfame, sucralose, and aspartame) during 6 events under different weather conditions (snowmelt and trace to 32 mm 2-day cumulative precipitation). Greater intra- and inter-event variability was observed for Giardia, E. coli and C. perfringens than for studied WWMPs. Even with the addition of inflow and infiltration, daily variations dominated concentration trends. Thus, afternoon and early evening were identified as critical times with regards to high concentrations and flows for potential by-pass discharges. Peak concentrations of Giardia were observed during the June wet weather event (1010 cysts/L), with the highest flowrates relative to the mean monthly flowrate. Overall, Giardia, E. coli and C. perfringens concentrations were positively correlated with flowrate (R > 0.32, p < 0.05). In raw sewage samples collected under high precipitation conditions, caffeine, carbamazepine and its metabolite 2-OH-carbamazepine were significantly correlated (p < 0.05) with Giardia, E. coli, and C. perfringens demonstrating that they are useful markers for untreated sewage discharges. Data from the study are needed for estimating peak concentrations discharged from wastewater sources in relation to precipitation or snowmelt events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.10.068 | DOI Listing |
Water Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
Nanofiltration (NF) membranes offer tremendous potential in wastewater reuse, desalination, and resource recovery to alleviate water scarcity and environmental contamination. However, separating micropollutants and charged ions from wastewater while maintaining high water permeation remains challenging for conventional NF membranes. Customizing diffusion and interaction behavior of monomers at membrane-forming interfaces is promising for regulating interior pore structures and surface morphology properties for polyamide NF membranes, reaching efficient screening and retaining of solutes from water.
View Article and Find Full Text PDFWater Res
December 2024
GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:
Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.
View Article and Find Full Text PDFACS ES T Water
December 2024
Berliner Wasserbetriebe, Neue Jüdenstraße 1, 10179 Berlin, Germany.
We present a versatile flow-through tube passive sampling device (TPS), with a controllable feedwater volumetric flow, that can be calibrated against the feedwater load of organic micropollutants (OMPs). This semipassive approach has the advantage of a determinable water load feeding the sampling device. The design of the TPS allows for new sampling scenarios in closed piping while providing stable and controlled sampling conditions.
View Article and Find Full Text PDFBMC Chem
December 2024
Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, PMB 230, Ede, Nigeria.
This Study focuses on the preparation of sustainable and efficient Chitosan catalyst for the removal of three organic pollutants, 17β-Estradiol (E2), 17α-ethynyl estradiol (EE2) and triclosan (TCS) from water. The prepared nanocomposites were characterized by different techniques which confirmed the presence of the key components Chitosan, Carica Papaya seed and Kaolinite. The optical characterization proved the nanocomposite is photoactive with a band gap of 1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
Amoxicillin (AMX) is a common antibiotic used in both human and veterinary medicine in order to both cure and avoid bacterial infections. Traces of AMX have been found in ground and surface water, urban effluents, water, and wastewater treatment facilities due to its widespread use. The level of hazard and disposal of this class of micropollutants is the reason for concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!