Discovery and evaluation concerns of barely visible impact damage in composite materials is a well-known issue in industries using these materials. This work proposes a frequency sweep method where damage assessment is conducted with respect to the time domain. Firstly, a combined linear and nonlinear ultrasound imaging technique is proposed, which focuses on the excitation of damage/defect regions using a frequency sweep methodology from multiple transducer locations. Secondly, the method deconstructs time domain signals, which allows for the visualisation of linear and nonlinear ultrasound components independently. While, a filtering and frequency band separation method was used to exploit defect responses over different frequency ranges and provide time domain visualisation at the damage region. Finally, image segmentation was employed to automate the damage sizing procedure, while a binary imaging method was used to remove false positive damage regions produced by material vibration mode excitation (fundamental frequency responses) by using the nonlinear responses as a baseline-free tool. The results showed that the combined linear and nonlinear results provided more accurate results than a purely linear or nonlinear approach, furthermore the results were shown to be equivalent to those of a standard phased array system. The ability of the method to visualise nonlinear outputs in time can improve the understanding of nonlinear ultrasound mechanisms while provides a clear argument that a complete approach, incorporating both linear and nonlinear methods should be regarded as the future of NDT/E systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2018.10.011DOI Listing

Publication Analysis

Top Keywords

linear nonlinear
24
nonlinear ultrasound
16
combined linear
12
time domain
12
nonlinear
10
impact damage
8
frequency sweep
8
damage
6
frequency
5
method
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!