The activation of microglial cells is presumed to play a key role in the pathogenesis of Parkinson's disease (PD). The activity of microglia is regulated by the histamine-4 receptor (HR), thus providing a novel target that may prevent the progression of PD. However, this putative mechanism has so far not been validated. In our previous study, we found that mRNA expression of HR was upregulated in PD patients. In the present study, we validated this possible mechanism using the rotenone-induced PD rat model, in which mRNA expression levels of HR-, and microglial markers were significantly increased in the ventral midbrain. Inhibition of HR in rotenone-induced PD rat model by infusion of the specific HR antagonist JNJ7777120 into the lateral ventricle resulted in blockade of microglial activation. In addition, pharmacological targeting of HR in rotenone-lesioned rats resulted in reduced apomorphine-induced rotational behaviour, prevention of dopaminergic neuron degeneration and associated decreases in striatal dopamine levels. These changes were accompanied by a reduction of Lewy body-like neuropathology. Our results provide first proof of the efficacy of an HR antagonist in a commonly used PD rat model, and proposes the HR as a promising target to clinically tackle microglial activation and thereby the progression of PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2018.11.006 | DOI Listing |
J Orthop Surg Res
January 2025
Monash Suzhou Research Institute, Monash University, Suzhou, 215000, Jiangsu, China.
Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.
View Article and Find Full Text PDFSci Rep
January 2025
Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!