Global and Multiplexed Dendritic Computations under In Vivo-like Conditions.

Neuron

MRC Laboratory of Molecular Biology, Cambridge, UK; Sainsbury Wellcome Centre, University College London, London, UK.

Published: November 2018

Dendrites integrate inputs nonlinearly, but it is unclear how these nonlinearities contribute to the overall input-output transformation of single neurons. We developed statistically principled methods using a hierarchical cascade of linear-nonlinear subunits (hLN) to model the dynamically evolving somatic response of neurons receiving complex, in vivo-like spatiotemporal synaptic input patterns. We used the hLN to predict the somatic membrane potential of an in vivo-validated detailed biophysical model of a L2/3 pyramidal cell. Linear input integration with a single global dendritic nonlinearity achieved above 90% prediction accuracy. A novel hLN motif, input multiplexing into parallel processing channels, could improve predictions as much as conventionally used additional layers of local nonlinearities. We obtained similar results in two other cell types. This approach provides a data-driven characterization of a key component of cortical circuit computations: the input-output transformation of neurons during in vivo-like conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226578PMC
http://dx.doi.org/10.1016/j.neuron.2018.08.032DOI Listing

Publication Analysis

Top Keywords

in vivo-like conditions
8
input-output transformation
8
global multiplexed
4
multiplexed dendritic
4
dendritic computations
4
computations in vivo-like
4
conditions dendrites
4
dendrites integrate
4
integrate inputs
4
inputs nonlinearly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!