Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs.

ACS Nano

State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083 , China.

Published: December 2018

The ability to detect linearly polarized light is central to practical applications in polarized optical and optoelectronic fields and has been successfully demonstrated with polarized photodetection of in-plane anisotropic two-dimensional (2D) materials. Here, we report the anisotropic optical characterization of a group IV-V compound-2D germanium arsenic (GeAs) with anisotropic monoclinic structures. High-quality 2D GeAs crystals show the representative angle-resolved Raman property. The in-plane anisotropic optical nature of the GeAs crystal is further investigated by polarization-resolved absorption spectra (400-2000 nm) and polarization-sensitive photodetectors. From the visible to the near-infrared range, 2D GeAs nanoflakes demonstrate the distinct perpendicular optical reversal with a 75-80° angle on both the linear dichroism and polarization-sensitive photodetection. Obvious anisotropic features and the high dichroic ratio of I /I ∼ 1.49 at 520 nm and I /I ∼ 4.4 at 830 nm are achieved by the polarization-sensitive photodetection. The polarization-dependent photocurrent mapping implied that the polarized photocurrent mainly occurred at the Schottky photodiodes between electrode/GeAs interface. These experimental results are consistent with the theoretical calculation of band structure and band realignment. Besides the excellent polarization-sensitive photoresponse properties, GeAs-based photodetectors also exhibit rapid on/off response. These results demonstrate that the 2D GeAs crystals have promising potential for polarization optical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b06629DOI Listing

Publication Analysis

Top Keywords

perpendicular optical
8
optical reversal
8
linear dichroism
8
polarized photodetection
8
in-plane anisotropic
8
anisotropic optical
8
geas crystals
8
polarization-sensitive photodetection
8
geas
6
polarized
5

Similar Publications

Nonlinear emission phenomena observed in transition metal dichalcogenides (TMDCs) have significantly advanced the development of robust nonlinear optical sources within two-dimensional materials. However, the intrinsic emission characteristics of TMDCs are inherently dependent on the specific material, which constrains their tunability for practical applications. In this study, we propose a strategy for the selective enhancement and modification of second-harmonic generation (SHG) emission in a multilayer WS flake through the implementation of a silicon (Si)-based circular Bragg grating (CBG) structure positioned on an Au/SiO substrate.

View Article and Find Full Text PDF

Laser communications (lasercom) can enable more efficient and higher bandwidth communications than conventional radio frequency (RF) systems, but requires more sophisticated pointing and tracking (PAT) systems to acquire and maintain links. Liquid lens arrays can provide compact, nonmechanical beam steering as an alternative to fast-steering mirrors and mechanical gimbals. An array of two liquid lenses offset in perpendicular axes along with a third on-axis lens in the array are used for beam steering and divergence control, respectively.

View Article and Find Full Text PDF

Controlled Self-assembly of Nanographdiynes Mediated by Molecular Dipoles Induced by Rotatory Asymmetric Substituents.

Chemistry

January 2025

Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organi, Zhongguancun North First Street 2, 100190, Beijing, CHINA.

The discrete π- stacks of specific lengths and orientation is crucial for understanding the impact of intermolecular interactions on optical or electronic properties of nanographdiynes. We designed and synthesized nanographdiynes modified with bulky rotatable asymmetric substituents. The peripheral substituents with different push-pull electronic properties can induce molecular dipoles perpendicular to nanoGDY π surface with different orientation.

View Article and Find Full Text PDF

The construction of multilevel magnetic states using materials with perpendicular magnetic anisotropy (PMA) offers a novel approach to enhancing the storage density and read/write efficiency of nonvolatile magnetic memory devices. In this study, optically readable multilevel magnetic domain states are achieved by inducing asymmetric interlayer interactions and decoupling the magnetic reversal behavior of individual ferromagnetic (FM) layers in exchange-biased FM multilayers with PMA. Hepta-level magnetic domain states are formed in [Co/Pt] FM multilayers grown on an antiferromagnetic FeO layer within a relatively low magnetic field range of ∼±400 Oe.

View Article and Find Full Text PDF

Cellular structures are increasingly utilized in modern engineering due to their exceptional mechanical and physical properties. In this study, the deformation and failure mechanisms of two energy-efficient lattice structures-hexagonal honeycomb and re-entrant honeycomb-were investigated. These structures were manufactured using additive stereolithography with light-curable Durable Resin V2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!