The real time monitoring and quantification of the concentration of highly fluorescent nitrogen-doped carbon nanodots (C-dots) in eukaryotic Tobacco bright yellow-2 (BY-2) plant cells was investigated by fluorescence and confocal microscopy. The quantitative measurement of their fluorescent emission intensity was possible because of the high photo-resistance, good water solubility and the absence of fading effect of the nanoparticles, which is frequent occurred problem of the conventional organic dyes. The microscopic analysis revealed that C-dots entered generally into the cells through endocytosis and caused negligible cytotoxicity. The multicolor cellular imaging of labeled Tobacco BY-2 demonstrates that the cells were in good health conditions and any blinking artifacts were not observed. The quantification of fluorescence emission intensity was carried out in the intracellular regions where the relationship between the C-dots concentration and relative emission was linear. Based on a control experiment with fluorescence liposomes with known dependence between C-dots concentration and emission, we were able to determine the amount of accumulated nanoparticles in the inner compartments of the eukaryotic cell through subsequent digital image analysis. The reported microscopic approach may be used for accurate testing and direct examination of the drug internalization mechanisms by C-dots as sensitive probes in single cells or tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.23161DOI Listing

Publication Analysis

Top Keywords

real time
8
time monitoring
8
monitoring quantification
8
carbon nanodots
8
emission intensity
8
c-dots concentration
8
cells
5
c-dots
5
quantification uptake
4
uptake carbon
4

Similar Publications

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Evaluating the Real-World Safety of Icosapent Ethyl Versus Omega-3 Polyunsaturated Fatty Acid in Nationwide US Veterans Cohort: Examining Atrial Fibrillation and Bleeding Endpoints.

Clin Drug Investig

January 2025

Department of Medicine, Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA.

Purpose: The REDUCE-IT randomized trial demonstrated a cardiovascular benefit of icosapent ethyl (IPE) but also raised potential safety signals for atrial fibrillation (AF) and serious bleeding. We aimed to evaluate the real-world safety of IPE versus mixed omega-3 polyunsaturated fatty acid (OM-3) formulations.

Methods: This retrospective active comparator new-user cohort study compared rates of new-onset AF and major bleeding (MB) among adult new users of IPE versus OM-3 in 2020-2024 US Veterans Affairs data.

View Article and Find Full Text PDF

Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

December 2024

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

View Article and Find Full Text PDF

Background: Left ventricular (LV) volumes can be calculated from various linear, monoplane, and multiplane echocardiographic methods, and the same method can be applied to different imaging views. However, these methods and their variations have not been comprehensively evaluated against real-time 3-dimensional echocardiography (RT3D).

Hypothesis/objectives: To identify the LV volumetric approaches that produce the least bias and the best agreement with RT3D, and to assess interoperator reproducibility between an experienced and an inexperienced operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!