The tongue is uniquely exposed to water-soluble environmental chemicals that may lead to injury or tumorigenesis. However, comparatively little research has focused on the molecular and functional organization of trigeminal ganglia (TG) afferent neurons innervating the tongue. The current study identified and characterized lingual sensory neurons based on a neuronal subtype classification previously characterized in the dorsal root ganglion (DRG) neurons. We employed immunohistochemistry on transgenic reporter mouse lines as well as single-cell PCR of known markers of neuronal subtypes to characterize neuronal subtypes innervating the tongue. Markers expressed in retrogradely labeled TG neurons were evaluated for the proportion of neurons expressing each marker, intensity of expression, and overlapping genes. We found that tongue-innervating sensory neurons primarily expressed CGRP, TRPV1, TrkC, 5HT3A and Parvalbumin. These markers correspond to peptidergic and a subgroup of non-peptidergic C-nociceptors, peptidergic A nociceptors, proprioceptors and myelinated low-threshold mechanoreceptors (LTMRs). Interestingly, as reported previously, we also found several differences between TG and DRG neurons indicating the need for single-cell sequencing of neuronal types based on tissue type within all TG as well as DRG neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224080PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207069PLOS

Publication Analysis

Top Keywords

neuronal subtypes
12
drg neurons
12
subtypes innervating
8
neurons
8
innervating tongue
8
sensory neurons
8
neuronal
5
characterization sensory
4
sensory neuronal
4
innervating mouse
4

Similar Publications

Wnt signalling facilitates neuronal differentiation of cochlear Frizzled10-positive cells in mouse cochlea via glypican 6 modulation.

Cell Commun Signal

January 2025

Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.

Degeneration of cochlear spiral ganglion neurons (SGNs) leads to irreversible sensorineural hearing loss (SNHL), as SGNs lack regenerative capacity. Although cochlear glial cells (GCs) have some neuronal differentiation potential, their specific identities remain unclear. This study identifies a distinct subpopulation, Frizzled10 positive (FZD10+) cells, as an important type of GC responsible for neuronal differentiation in mouse cochlea.

View Article and Find Full Text PDF

The transcriptional response of cortical neurons to concussion reveals divergent fates after injury.

Nat Commun

January 2025

Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how this kind of injury alters neuron subtypes. In this study, we follow neuronal populations over time after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress-responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, but its genetic architecture remains incompletely characterized. Rare coding variants, which can profoundly impact gene function, represent an underexplored dimension of ADHD risk. In this study, we analyzed large-scale DNA sequencing datasets from ancestrally diverse cohorts and observed significant enrichment of rare protein-truncating and deleterious missense variants in highly evolutionarily constrained genes.

View Article and Find Full Text PDF

Lysosomal storage disorders characterized by defective heparan sulfate (HS) degradation, such as Mucopolysaccharidosis type IIIA-D (MPS-IIIA-D), result in neurodegeneration and dementia in children. However, dementia is preceded by severe autistic-like behaviours (ALBs), presenting as hyperactivity, stereotypies, social interaction deficits, and sleep disturbances. The absence of experimental studies on ALBs' mechanisms in MPS-III has led clinicians to adopt symptomatic treatments, such as antipsychotics, which are used for non-genetic neuropsychiatric disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!