The use of plasmonic nanoplatforms has received increasing interest in a wide variety of fields ranging from theranostics to environmental sensing to plant biology. In particular, the development of plasmonic nanoparticles into ordered nanoclusters has been of special interest due to the new chemical functionalities and optical responses that they can introduce. However, achieving predetermined nanocluster architectures from bottom-up approaches in the colloidal solution state still remains a great challenge. Herein, we report a one-pot assembly approach that provides flexibility in precise control of core-satellite nanocluster architectures in the colloidal solution state. We found that the pH of the assembly medium plays a vital role in the hierarchy of the nanoclusters. The architecture along with the size of the satellite gold nanoparticles determines the optical responses of nanoclusters. Using electron microscopy and optical spectroscopy, we introduce a set of design rules for the synthesis of distinct architectures of silica-core gold satellites nanoclusters in the colloidal solution state. Our findings provide insight into advancing the colloidal solution state nanoclusters formation with predictable architectures and optical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b02792 | DOI Listing |
Int J Biol Macromol
January 2025
Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:
This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.
View Article and Find Full Text PDFWater Res
December 2024
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China. Electronic address:
Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
The rapid development of delivery systems for cosmetics has revealed two critical challenges in the field: enhancing the solubility of active ingredients and ensuring the stability of natural materials used in cosmetics. Nanoemulsion technology has emerged as an indispensable solution for addressing these challenges, not only enhancing the stability of cosmetics but also improving the solubility of pharmaceuticals and active ingredients with poor solubility. Nanoemulsion formulations have reinforced stability and amended the bioavailability of hydrophobic drugs.
View Article and Find Full Text PDFActa Anaesthesiol Scand
February 2025
Department of Intensive Care, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Background: Intravenous albumin is used for resuscitation and substitution but is not supported by high-certainty evidence. As clinical practice likely varies, we aimed to describe the issuing of albumin solutions across Danish public hospitals.
Methods: We assessed issuing of intravenous albumin solutions (5% and 20%) to all Danish public hospitals in 2022.
Theranostics
January 2025
Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
Infectious bone defects present a significant clinical challenge, characterized by infection, inflammation, and subsequent bone tissue destruction. Traditional treatments, including antibiotic therapy, surgical debridement, and bone grafting, often fail to address these defects effectively. However, recent advancements in biomaterials research have introduced innovative solutions for managing infectious bone defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!