aUCBT is a valuable curative option in pediatric patients with refractory idiopathic SAA and no available matched sibling or unrelated donors. Experience in the use of autologous cord blood units in patients with SAA is limited and private for-profit cord blood-banking programs are controversial. We report the successful treatment of two patients with SAA, aged 15 and 24 months, with autologous cord blood combined with immunosuppression. After conditioning with 200 mg/kg cyclophosphamide and ATG, 7.5 mg/kg, 32.2 × 10 /kg, and 3.8 × 10 /kg autologous cord blood nucleated cells were infused, respectively. One of our patients underwent transplantation after failure of IST. Both patients received post-transplant immunosuppression with cyclosporine for 12 months. They remain disease-free 6 years post-transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/petr.13320DOI Listing

Publication Analysis

Top Keywords

autologous cord
16
cord blood
16
post-transplant immunosuppression
8
patients saa
8
cord
5
patients
5
successful long-term
4
long-term hematological
4
hematological immunological
4
immunological reconstitution
4

Similar Publications

Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials.

Stem Cell Res Ther

January 2025

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.

Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.

View Article and Find Full Text PDF

Donor MHC-specific thymus vaccination allows for immunocompatible allotransplantation.

Cell Res

January 2025

Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.

Organ transplantation is the last-resort option to treat organ failure. However, less than 10% of patients benefit from this only option due to lack of major histocompatibility complex (MHC)-matched donor organs and 25%-80% of donated organs could not find MHC-matched recipients. T cell allorecognition is the principal mechanism for allogeneic graft rejection.

View Article and Find Full Text PDF

Objective: Blood component therapy has shown promising potential as an emerging treatment for dry eye disease; however, it remains unclear which specific blood component is the most effective. This study aims to compare the efficacy of different blood components in the treatment of dry eye disease through a network meta-analysis, with the goal of providing the latest and most reliable evidence for clinical practice.

Methods: We conducted a systematic search of the PubMed, Web of Science, Cochrane, Embase, and Scopus databases, with the search concluding on June 1, 2024.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Unlabelled: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model.

Methods: A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!