Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During litchi (Litchi chinensis Sonn.) fruit ripening, two major physiological changes, degreening (Chl degradation) and pigmentation (anthocyanin biosynthesis), are visually apparent. However, the specific factor triggering this important transition is still unclear. In the present study, we found that endogenous ABA content increased sharply when Chl breakdown was initiated and the ABA level peaked just before the onset of anthocyanin accumulation, suggesting that ABA plays an important role during litchi fruit pigmentation. We characterized three ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTORs (LcABF1/2/3) belonging to group A of the basic leucine zipper (bZIP) transcription factors previously shown to be involved in ABA signaling under abiotic stress. LcABF1 transcripts increased at the onset of Chl degradation, and the expression of LcABF3 accumulated in parallel with anthocyanin biosynthesis. In addition, dual luciferase and yeast one-hybrid assays indicated that LcABF1/2 recognized ABA-responsive elements in the promoter region of Chl degradation-related genes (PAO and SGR), while LcABF2/3 bound the promoter region of LcMYB1 and anthocyanin biosynthesis-related structural genes. Indeed, Nicotiana benthamiana leaves transiently expressing LcABF1/2 showed a senescence phenomenon with Chl degradation, and LcABF3 overexpression increased the accumulation of anthocyanin via activation of LcMYB1, which is the key determinant of anthocyanin biosynthesis. These data indicate that LcABF1/2/3 are important transcriptional regulators of ABA-dependent litchi fruit ripening involved in both Chl degradation and anthocyanin biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcy219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!