OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction.

Bioinformatics

Computer, Electrical & Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Published: June 2019

Motivation: Ontologies are widely used in biology for data annotation, integration and analysis. In addition to formally structured axioms, ontologies contain meta-data in the form of annotation axioms which provide valuable pieces of information that characterize ontology classes. Annotation axioms commonly used in ontologies include class labels, descriptions or synonyms. Despite being a rich source of semantic information, the ontology meta-data are generally unexploited by ontology-based analysis methods such as semantic similarity measures.

Results: We propose a novel method, OPA2Vec, to generate vector representations of biological entities in ontologies by combining formal ontology axioms and annotation axioms from the ontology meta-data. We apply a Word2Vec model that has been pre-trained on either a corpus or abstracts or full-text articles to produce feature vectors from our collected data. We validate our method in two different ways: first, we use the obtained vector representations of proteins in a similarity measure to predict protein-protein interaction on two different datasets. Second, we evaluate our method on predicting gene-disease associations based on phenotype similarity by generating vector representations of genes and diseases using a phenotype ontology, and applying the obtained vectors to predict gene-disease associations using mouse model phenotypes. We demonstrate that OPA2Vec significantly outperforms existing methods for predicting gene-disease associations. Using evidence from mouse models, we apply OPA2Vec to identify candidate genes for several thousand rare and orphan diseases. OPA2Vec can be used to produce vector representations of any biomedical entity given any type of biomedical ontology.

Availability And Implementation: https://github.com/bio-ontology-research-group/opa2vec.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bty933DOI Listing

Publication Analysis

Top Keywords

vector representations
16
annotation axioms
12
gene-disease associations
12
combining formal
8
ontology meta-data
8
predicting gene-disease
8
opa2vec
5
ontologies
5
axioms
5
ontology
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!