This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2) Single-step assembly of LED arrays containing a repetition of a single component type; (3) Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1) self-packaging surface mount devices, and (3.2) multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4) to enable the assembly of microscopic chips (10 μm⁻1 mm); a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5) the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190092PMC
http://dx.doi.org/10.3390/mi7040054DOI Listing

Publication Analysis

Top Keywords

surface tension
12
tension directed
12
directed fluidic
8
fluidic self-assembly
8
self-assembly semiconductor
8
semiconductor chips
8
electrical connection
8
assembly
8
component type
8
large area
8

Similar Publications

Formulation and adjuvant technologies can facilitate the use of insecticides that have higher biological efficiency application features. Safety, physicochemical properties by increasing consumer demand for safe food and enhancing operator safety. The aim of this current work was to develop a green efficient, and stable pesticide formulation.

View Article and Find Full Text PDF

Preparation and characterization of the octenyl succinic anhydride (OSA) modified sphingan WL gum as novel biopolymeric surfactants.

Int J Biol Macromol

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China. Electronic address:

Combining polymer and surfactant in one agent namely polymeric surfactants with both high viscosity and surface activity has become a viable alternative for the traditional enhanced oil recovery (EOR) processes. With the purpose of developing new polymeric surfactants, the biopolymer flooding agent sphingan WL gum was modified by octenyl succinic anhydride (OSA) through the esterification reaction. The effects of molecular weight (MW) of WL and the OSA: WL ratio on the properties of the products were investigated.

View Article and Find Full Text PDF

Thermoelectrochemical Method for Quantification of the Micellization Entropy of Redox-Active Polymers.

ACS Macro Lett

January 2025

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Redox-active micelles undergo reversible association and dissociation in response to their redox potential and are promising materials for various applications, such as drug delivery and bioimaging. Evaluation of the micellization entropy is critical in controlling the thermodynamics of micelle formation. However, conventional methods such as isothermal titration calorimetry and surface tensiometry require a long measurement time to observe changes in the heat flow or the surface tension caused by the micellization.

View Article and Find Full Text PDF

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

Study on wettability of water stemming for blasting dust adjusted by surfactants and inorganic salts.

R Soc Open Sci

January 2025

State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, People's Republic of China.

Water stemming is an efficient method of removing blasting dust by wetting. There is still a lack of methods for rapid optimization of water stemming components with high wettability. Herein, blasting dust was collected from a tunnel in Chongqing (China) to investigate its removal performance by different water stemmings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!