The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X-ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X-ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high-performance free-electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N/O/H and N/H feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X-ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N/H plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N/O/H plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N/H plasma is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S1600577518014017 | DOI Listing |
Metab Eng Commun
December 2024
Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
The use of metal oxide catalysts to enhance plasma CO reduction has seen significant recent development towards processes to reduce greenhouse gas emissions and produce renewable chemical feedstocks. While plasma reactors are effective at producing the intended chemical transformations, the conditions can result in catalyst degradation. Atomic layer deposition (ALD) can be used to synthesize complex, hierarchically structured metal oxide plasma catalysts that, while active for plasma CO reduction, are potentially vulnerable to degradation due to their high surface area and nanoscopic thickness.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Ruhr University Bochum, Analytische Chemie, Universitätsstr 150, 44780, Bochum, GERMANY.
The direct CO2 reduction reaction (CO2RR) from simulated flue gas of various CO2 concentrations could minimize extra energy for pre-concentration processes to highly concentrated CO2 as a feed-stock. We investigate the challenges for CO2RR caused by low CO2 concentrations and provide strategies concerning the impact of the chosen electrocatalyst material and the selection of the electrolyte to attain high CO selectivity. We continuously feed CO2 mixed with N2 (the typical dilutant in flue gas) in various ratios to gas diffusion electrodes in a model flow-through electrolyzer.
View Article and Find Full Text PDFPrep Biochem Biotechnol
December 2024
Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India.
The world faces pressing environmental challenges, including greenhouse gas emissions, global warming, climate change, and rising sea levels. Alongside, these issues, the depletion of fossil fuels has intensified the search for alternative energy sources. Algal biomass presents a promising long-term solution to these global problems.
View Article and Find Full Text PDFWaste Manag
December 2024
Petroleum and Energy from Biomass Research Group, Department of Chemistry, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil. Electronic address:
Post-consumer waste management systems have proven insufficient to meet the growing global demand. In this context, adopting alternative pathways that complement established practices, such as chemical recycling, becomes essential. Accordingly, this study evaluated the potential of the co-pyrolysis process to manage polyethylene terephthalate (PET) residues and waste cooking oil (WCO), converting them into industrial inputs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!