Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A strategy that utilizes DNA for controlling the association pathway of proteins is described. This strategy uses sequence-specific DNA interactions to program energy barriers for polymerization, allowing for either step-growth or chain-growth pathways to be accessed. Two sets of mutant green fluorescent protein (mGFP)-DNA monomers with single DNA modifications have been synthesized and characterized. Depending on the deliberately controlled sequence and conformation of the appended DNA, these monomers can be polymerized through either a step-growth or chain-growth pathway. Cryo-electron microscopy with Volta phase plate technology enables the visualization of the distribution of the oligomer and polymer products, and even the small mGFP-DNA monomers. Whereas cyclic and linear polymer distributions were observed for the step-growth DNA design, in the case of the chain-growth system linear chains exclusively were observed, and a dependence of the chain length on the concentration of the initiator strand was noted. Importantly, the chain-growth system possesses a living character whereby chains can be extended with the addition of fresh monomer. This work represents an important and early example of mechanistic control over protein assembly, thereby establishing a robust methodology for synthesizing oligomeric and polymeric protein-based materials with exceptional control over architecture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b10011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!