Despite recent advances in the stimuli-responsive composites for oil storage and smart lubrication, achieving the high oil storage and recyclable smart-lubrication remains a challenge. Herein, a novel cobweb-like structural system consisting of oil warehouse and transportation system was designed and prepared and it shows high capacity of oil storage and recyclable smart-lubrication. Hollow SiO microspheres grated of KH550 and porous polyimide (PPI) were used as oil warehouse and pipeline, respectively, to build the smart system. Because of the novel structure, the composites can keep both high oil-content and oil-retention. Applying stimuli on materials resulted in lubricants releasing on the contact surface which can reduce the friction and wear during sliding. However, removing stimuli, the capillary force induced the sucking back of lubricant into the interior of composites through interconnected small pores of PPI. On the basis of high oil storage and stimuli-responsive performance, the composites can be used for recyclable smart-lubrication. The composites showed remarkable lubricating properties (coefficient of friction 0.056 and Ws 3.55 × 10 mm N m) when the content of KHSM (hollow silica microspheres grated of KH550 (3-Aminopropyltriethoxysilane)) was 1.5 wt % by subjecting it to macroscopic pin-on-disc friction tests. Therefore, cobweb-like structural composites with oil warehouse and transportation system hold the promise for formulating of high oil storage and recyclable smart-lubrication.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b15198DOI Listing

Publication Analysis

Top Keywords

oil storage
24
recyclable smart-lubrication
20
oil warehouse
16
storage recyclable
16
cobweb-like structural
12
warehouse transportation
12
transportation system
12
high oil
12
oil
10
composites oil
8

Similar Publications

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

This research aimed to evaluate the use of edible coating from a combination of liquid smoke and turmeric extract as a preservative for mackerel at room temperature. Liquid smoke was obtained from the pyrolysis of oil palm empty fruit bunches (OPEFB) at a temperature of 380 °C and purified by distillation at 190 °C. Liquid smoke with a concentration of 3% was combined with turmeric extract at a ratio of 2, 4, 6, and 8 g/L (CLS 2:1, CLS 4:1, CLS 6:1 and CLS 8:1).

View Article and Find Full Text PDF

The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.

View Article and Find Full Text PDF

Soy Protein Isolate Improved the Properties of Fish Oil-Loaded Chitosan-Sodium Tripolyphosphate Capsules.

Foods

January 2025

Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

In this paper, the effect of soybean isolate protein (SPI) content on the physicochemical properties and oxidative stability of chitosan-sodium tripolyphosphate (CS-STPP)-loaded fish oil capsules was investigated. The SPI/CS-STTP capsules formed after the addition of different amounts of SPI were larger in size and more homogeneous in morphology than the CS-STPP capsules, and the SPI was encapsulated on the surface of the CS matrix, altering the surface properties and morphology of the particles. The study of different CS-to-SPI blend ratios (1:0, 3:1, 2:1, 1:1, 1:2) showed that the water content of the microcapsules increased from 49.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!