Thin films of nanoporous metal-organic frameworks, MOFs, are widely used for various purposes, ranging from molecular separation to electronic and optical applications. Ultrathin MOF films prepared in a controlled layer-by-layer fashion, also referred to as surface-mounted MOFs or SURMOFs, have attracted particular attention. While many aspects of SURMOF synthesis have been investigated and optimized, the impact of growth modulators, which are well established in bulk MOF synthesis, has so far received only a little attention in the context of layer-by-layer approaches. Here, we investigate the impact of water as a growth modulator during the synthesis of thin MOF films of type HKUST-1. We find that water has a tremendous impact on the crystallinity and on the defect-density of the prepared MOF films. The use of the optimized water concentrations allows considerable improvement in the SURMOF crystallinity and at the same time reduces their defect density. This study shows that water is an important modulator in MOF thin film growth and can be used to tune the material from a low defect to high defect state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt03310b | DOI Listing |
Food Chem
January 2025
Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China. Electronic address:
Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi University for Nationalities, Nanning, Guangxi 530008, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
It is an important task to construct intelligent packaging for meat freshness monitoring with good color stability and indication function. Herein, cobalt-based metal-organic framework nanomaterials (Co-MOF, ZIF-67) with antimicrobial and ammonia-sensitive properties were successfully synthesized and added into gelatin/agar (GA) matrix to develop highly stable intelligent films (GA/ZIF67). The incorporation of ZIF-67 nanoparticles enhanced the hydrophobicity (water contact angle >90°) and UV-blocking properties (close to 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
As a novel fluorescent carbon nanomaterial, carbon dots are restricted by their poor fluorescence in the solid state, although they exhibit favorable photoluminescence in solution. N-doped carbon dots (N-CDs) and solid-state fluorescence films were prepared using green and renewable cellulose-derived materials, respectively. The hydrogen bonding network of carboxymethyl cellulose (CMC) inhibits the self-aggregation behavior of N-CDs, which leads to solid-state fluorescence.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China. Electronic address:
The development of safe, environmentally friendly, edible antimicrobial packaging films represents a promising alternative to conventional plastic packaging for reducing spoilage and extending the shelf life of fresh food. Here, we propose a novel strategy to construct edible β-CD-MOF/carvacrol@zein (BCCZ) composite films by intertwining β-CD-MOF loaded with the antimicrobial essential oil carvacrol, and zein. The resulting BCCZ films exhibit high humidity-triggered, long-lasting bactericidal efficacy, effective fruit preservation, and excellent biosafety.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!