The introduction of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a standard hole transport layer greatly increased the efficiency of early organic solar cells. However, because PEDOT:PSS has a metallic property, it can still form a barrier by means of metal-semiconductor contact at its interface with the photoactive layer. In this study, we modified the PEDOT:PSS surface with hydroquinone (HQ) to remove that barrier. HQ treatment of the PEDOT:PSS surface lowered the hole transport barrier at the interface between the PEDOT:PSS and the active layer. In addition, because of the secondary doping effect of HQ, the sheet resistance of the PEDOT:PSS surface decreased by almost 2 orders of magnitude. As a result, the device fabricated with the HQ-modified PEDOT:PSS showed a 28% increase in efficiency compared to the device without HQ treatment. Modifying the PEDOT:PSS surface with HQ solution is an easy way to effectively boost the performance of polymer solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b15551DOI Listing

Publication Analysis

Top Keywords

pedotpss surface
16
solar cells
12
surface hydroquinone
8
performance polymer
8
polymer solar
8
pedotpss
8
hole transport
8
surface
5
treating poly34-ethylenedioxythiophenepolystyrenesulfonate
4
poly34-ethylenedioxythiophenepolystyrenesulfonate surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!