Mitochondrial myopathies are progressive muscle conditions caused primarily by the impairment of oxidative phosphorylation (OXPHOS) in the mitochondria. This causes a deficit in energy production in the form of adenosine triphosphate (ATP), particularly in skeletal muscle. The diagnosis of mitochondrial myopathy is reliant on the combination of numerous techniques including traditional histochemical, immunohistochemical, and biochemical testing combined with the fast-emerging molecular genetic techniques, namely next-generation sequencing (NGS). This has allowed for the diagnosis to become more effective in terms of determining causative or novel genes. However, there are currently no effective or disease-modifying treatments available for the vast majority of patients with mitochondrial myopathies. Existing therapeutic options focus on the symptomatic management of disease manifestations. An increasing number of clinical trials have investigated the therapeutic effects of various vitamins, cofactors, and small molecules, though these trials have failed to show definitive outcome measures for clinical practice thus far. In addition, new molecular strategies, specifically mtZFNs and mtTALENs, that cause beneficial heteroplasmic shifts in cell lines harboring varying pathogenic mtDNA mutations offer hope for the future. Moreover, recent developments in the reproductive options for patients with mitochondrial myopathies mean that for some families, the possibility of preventing transmission of the mutation to the next generation is now possible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277287 | PMC |
http://dx.doi.org/10.1007/s13311-018-00674-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!