Introduction: We compared the automated Elecsys and manual Innotest immunoassays for cerebrospinal fluid (CSF) Alzheimer's disease biomarkers in a multicenter diagnostic setting.

Methods: We collected CSF samples from 137 participants in eight local memory clinics. Amyloid β(1-42) (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) were centrally analyzed with Innotest and Elecsys assays. Concordances between methods were assessed.

Results: Biomarker results strongly correlated between assays with Spearman's ρ 0.94 for Aβ42, 0.98 for t-tau, and 0.98 for p-tau. Using Gaussian mixture modeling, cohort-specific cut-points were estimated at 1092 pg/mL for Aβ42, 235 pg/mL for t-tau, and 24 pg/mL for p-tau. We found an excellent concordance of biomarker abnormality between assays of 97% for Aβ42 and 96% for both t-tau and p-tau.

Discussion: The high concordances between Elecsys and Innotest in this nonacademic, multicenter cohort support the use of Elecsys for CSF Alzheimer's disease diagnostics and allow conversion of results between methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215060PMC
http://dx.doi.org/10.1016/j.dadm.2018.08.006DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
immunoassays cerebrospinal
8
cerebrospinal fluid
8
disease biomarkers
8
nonacademic multicenter
8
csf alzheimer's
8
elecsys
5
diagnostic performance
4
performance elecsys
4
elecsys immunoassays
4

Similar Publications

Alzheimer's disease and antibody-mediated immune responses to infectious diseases agents: a mendelian randomization study.

Hereditas

January 2025

The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China.

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, with antibody-mediated immune responses to infectious diseases agents potentially playing a decisive role in its pathophysiological process. However, the causal relationship between antibodies and AD remains unclear.

Methods: A two-sample Mendelian randomization (MR) analysis was conducted to investigate the causal link between antibody-mediated immune responses to infectious diseases agents and the risk of AD.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!