In this study the ability of spherical particles (SPs) obtained from the tobacco mosaic virus (TMV) virions to enhance the immunogenic potential of the vaccine was evaluated. TMV SPs were shown to increase the protective properties of the widely used effective Russian adjuvant-free rabies vaccine, composed of killed rabies virions. The results of the NIH potency test showed enhancement of protectivity, that is comparable with the effect of the incomplete Freund׳s adjuvant on the same vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214837PMC
http://dx.doi.org/10.1016/j.dib.2018.10.030DOI Listing

Publication Analysis

Top Keywords

spherical particles
8
tmv virions
8
virions enhance
8
protective properties
8
rabies vaccine
8
particles derived
4
derived tmv
4
enhance protective
4
properties rabies
4
vaccine
4

Similar Publications

Aim: The study aimed to formulate solid lipid nanoparticles (SLNs) for the transdermal delivery of PPL to improve skin retention and efficacy.

Materials And Method: The particle size distribution of SLNs was determined and the morphology of SLNs was also analyzed by SEM. , and evaluations were done for PPL loaded SLN.

View Article and Find Full Text PDF

Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.

View Article and Find Full Text PDF

The synergistic optical, electronic, and chemical properties of metal nanoparticles present in close proximity have potential applications in energy, medicine, and sustainability. Fundamental studies and application development based on spontaneous self-assembly of one-dimensional (1D) chains of metal nanoparticles without external organization agencies have been pursued for over four decades. The spontaneous formation of 1D chains in a solution of stabilized spherical nanoparticles may be driven by the emergence of local anisotropy due to dipolar interaction, representing a trapped non-equilibrium state.

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!