Cervical cancer is one of the most common cancer in female worldwide. The expression of high-risk human papillomavirus E7 oncogene is necessary for the maintenance of malignant phenotypes and transformation. Accumulating studies of this protein has been explored in cervical cancer, however, there are fewer studies on how E7 expression affects the expression of global circular RNA. CircRNA, a promising biomarker and even therapeutic target, has become a star molecular in research after miRNA and long non-coding RNA. Our aim of this study was to investigate the global circRNA levels modulated by HPV E7 expression and identified the potential consequences for mechanism studies. Here we investigated the expression profiles of circRNAs by transfecting E7 siRNA in Caski cells with high-throughput microarray technology. In total, we identified 526 dysregulated circRNAs with fold change ≥2 or≤0.5, and p< 0.05. Among them, 352 were up-regulated and 174 were down-regulated. In addition, 8 selected circRNAs confirmed using qRT-PCR was in line with the results of microarray analysis. Furthermore, bioinformatic analyses indicated that differently expressed circRNAs might implicate in the mTOR signaling pathway, proline metabolism and glutathione metabolism. In conclusion, this study showed the expression profiles of circRNAs regulated by HPV16 E7 in cervical cancer cells and provides novel insights into the new potential candidates for future mechanism studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216014 | PMC |
http://dx.doi.org/10.7150/jca.24253 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.
Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.
PLoS One
January 2025
Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical College, Shanghai, China.
Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!