It is known that viruses can active the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in host cells to support cell survival and viral replication; however, the role of PI3K/Akt signaling in the pathogenic mechanisms induced by Marek's disease virus (MDV) which causes a neoplastic Marek's disease in poultry, remains unknown. In this study, we showed that MDV activated the PI3K/Akt pathway in chicken embryo fibroblasts (CEFs) at the early phase of infection, whereas treatment with a PI3K inhibitor LY294002 prior to MDV infection decreased viral replication and DNA synthesis. Flow cytometry analysis showed that inhibition of the PI3K/Akt pathway could significantly increase apoptosis in MDV-infected host cells, indicating that activation of PI3K/Akt signaling could facilitate viral replication through support of cell survival during infection. Evaluation of the underlying molecular mechanism by co-immunoprecipitation and laser confocal microscopy revealed that a viral protein Meq interacted with both p85α and p85β regulatory subunits of PI3K and could induce PI3K/Akt signaling in Meq-overexpressing chicken fibroblasts. Our results showed, for the first time, that MDV activated PI3K/Akt signaling in host cells through interaction of its Meq protein with the regulatory p85 subunit of PI3K to delay cell apoptosis and promote viral replication. This study provides clues for further studies of the molecular mechanisms underlying MDV infection and pathogenicity for the host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206265 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.02547 | DOI Listing |
Sci Adv
January 2025
Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil.
Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and siRNA-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection.
View Article and Find Full Text PDFJ Virol
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
The heterotrimeric RNA-dependent RNA polymerase (RdRp) of influenza A virus catalyzes viral RNA transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA) by adopting different conformations. A switch from transcription to replication occurs at a relatively late stage of infection. We recently reported that the viral NS2 protein, expressed at later stages from a spliced transcript of the NS segment messenger RNA (mRNA), inhibits transcription, promotes replication and plays a key role in the transcription-to-replication switch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!