CXCR4- and CCR5-Tropic HIV-1 Clones Are Both Tractable to Grow in Rhesus Macaques.

Front Microbiol

Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan.

Published: October 2018

A major issue for present HIV-1 research is to establish model systems that reflect or mimic viral replication and pathogenesis actually observed in infected humans. To this end, various strategies using macaques as infection targets have long been pursued. In particular, experimental infections of rhesus macaques by HIV-1 derivatives have been believed to be best suited, if practicable, for studies on interaction of HIV-1 and humans under various circumstances. Recently, through genetic manipulations and viral cell-adaptations, we have successfully generated a series of HIV-1 derivatives with CXCR4-tropism or CCR5-tropism that grow in macaque cells to various degrees. Of these viruses, those with best replicative potentials can grow comparably with a pathogenic SIVmac in macaque cells by counteracting major restriction factors TRIM5, APOBEC3, and tetherin proteins. In this study, rhesus macaques were challenged with CXCR4-tropic (MN4/LSDQgtu) or CCR5-tropic (gtu + A4CI1) virus. The two viruses were found to productively infect rhesus macaques, being rhesus macaque-tropic HIV-1 (HIV-1rmt). However, plasma viral RNA was reduced to be an undetectable level in infected macaques at 5-6 weeks post-infection and thereafter. While replicated similarly well in rhesus peripheral blood mononuclear cells, MN4/LSDQgtu grew much better than gtu + A4CI1 in the animals. To the best of our knowledge, this is the first report demonstrating that HIV-1 derivatives (variants) grow in rhesus macaques. These viruses certainly constitute firm bases for generating HIV-1rmt clones pathogenic for rhesus monkeys, albeit they grow more poorly than pathogenic SIVmac and SHIV clones reported to date.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200915PMC
http://dx.doi.org/10.3389/fmicb.2018.02510DOI Listing

Publication Analysis

Top Keywords

rhesus macaques
20
hiv-1 derivatives
12
rhesus
8
grow rhesus
8
macaque cells
8
pathogenic sivmac
8
gtu a4ci1
8
hiv-1
7
macaques
7
grow
5

Similar Publications

The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we perform single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls.

View Article and Find Full Text PDF

Effects of noise and metabolic cost on cortical task representations.

Elife

January 2025

Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.

Cognitive flexibility requires both the encoding of task-relevant and the ignoring of task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well understood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we study how task performance and biological constraints jointly determine the coding of relevant and irrelevant stimuli in neural circuits.

View Article and Find Full Text PDF

Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with Kaposi's sarcoma and B cell malignancies. Like all herpesviruses, KSHV contains conserved envelope glycoproteins (gps) involved in virus binding, entry, assembly, and release from infected cells, which are also targets of the immune response. Due to the lack of a reproducible animal model of KSHV infection, the precise functions of the KSHV gps during infection are not completely known.

View Article and Find Full Text PDF

The unique environment of the Qinghai-Tibetan Plateau provides a great opportunity to study how primate intestinal microorganisms adapt to ecosystems. The 16S rRNA gene amplicon and metagenome analysis were conducted to investigate the correlation between gut microbiota in primates and other sympatric animal species living between 3600 and 4500 m asl. Results showed that within the same geographical environment, Macaca mulatta and Rhinopithecus bieti exhibited a gut microbiome composition similar to that of Tibetan people, influenced by genetic evolution of host, while significantly differing from other distantly related animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!