Effects of Exogenous Auditory Attention on Temporal and Spectral Resolution.

Front Psychol

Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.

Published: October 2018

Previous research in the visual domain suggests that exogenous attention in form of peripheral cueing increases spatial but lowers temporal resolution. It is unclear whether this effect transfers to other sensory modalities. Here, we tested the effects of exogenous attention on temporal and spectral resolution in the auditory domain. Eighteen young, normal-hearing adults were tested in both gap and frequency change detection tasks with exogenous cuing. Benefits of valid cuing were only present in the gap detection task while costs of invalid cuing were observed in both tasks. Our results suggest that exogenous attention in the auditory system improves temporal resolution without compromising spectral resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206225PMC
http://dx.doi.org/10.3389/fpsyg.2018.01984DOI Listing

Publication Analysis

Top Keywords

spectral resolution
12
exogenous attention
12
effects exogenous
8
attention temporal
8
temporal spectral
8
temporal resolution
8
tasks exogenous
8
resolution
5
exogenous auditory
4
attention
4

Similar Publications

Purpose: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution -MRSI to accurately remove lipid and water signals while preserving the metabolite signal.

View Article and Find Full Text PDF

This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy for the characterization of filtrate portions of blood serum samples of myocardial infarction patients using 30 kDa centrifugal filter devices.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Institut - Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, Montréal, Quebec H3C 3J7, Canada.

Myocardial infarction (MI) is the leading cause of death and disability worldwide. It occurs when a thrombus forms after an atherosclerotic plaque bursts, obstructing blood flow to the heart. Prompt and accurate diagnosis is crucial for improving patient survival.

View Article and Find Full Text PDF

Purpose: We describe a case of non-traumatic macular hole in a pediatric patient associated with numerous epiretinal lesions throughout the macula.

Methods: A healthy 9-year-old girl presented to retina clinic with several months of blurry vision in the right eye. Clinically, there was a full-thickness macular hole with serous detachment and white epiretinal tufts.

View Article and Find Full Text PDF

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

Sci Rep

December 2024

School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou, 434100, Hubei, China.

Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!