is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between and its closely related, much less virulent relative, , in the quest to increase our understanding of the mechanisms underlying the success of as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266447 | PMC |
http://dx.doi.org/10.3390/genes9110540 | DOI Listing |
Mol Biotechnol
December 2024
Department of Biochemistry, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
Staphylococcus warneri is a gram-positive mesophilic bacterium, resilient to extreme environmental conditions. To unravel its Osmotic Tolerance Response (OTR), we conducted proteomic and metabolomic analyses under drought (PEG) and salt (NaCl) stresses. Our findings revealed 1340 differentially expressed proteins (DEPs) across all treatments.
View Article and Find Full Text PDFJ Mol Histol
December 2024
Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250000, Shandong Province, China.
The purpose of this study was to explore the inhibitory effect of andrographolide on the expression of key regulatory genes involved in the biofilm formation of Staphylococcus epidermidis (SE). Taking the film-producing strain Staphylococcus epidermidis SE1457 as the research object, the effect of andrographolide on the formation of Staphylococcus epidermidis biofilms was analyzed via crystal violet staining, and biofilm models of SE adhesion, aggregation and maturity were established in vitro. RT‒PCR was used to detect the effects of the expression of icaA-, atlE-, aap- and luxS-related genes of andrographolide on biofilm formation in SE.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
December 2024
Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
SUMMARY is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of studies to the natural biology of the organism.
View Article and Find Full Text PDFNanoscale
December 2024
School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant and .
View Article and Find Full Text PDFUnlabelled: Two-component systems (TCS) enable bacteria to sense and respond to environmental signals, facilitating rapid adaptation. , a key oral pathobiont, employs the CarSR TCS to modulate coaggregation with various Gram-positive partners by regulating the expression of , encoding a surface adhesion protein, as revealed by RNA-Seq analysis. However, the direct regulation of the -containing operon ( ) by the response regulator CarR, the broader CarR regulon, and the signals sensed by this system remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!